
netcat
Johannes Franken

<jfranken@jfranken.de>

On this page I show example uses of netcat - a command line tool to create network connections over tcp
or udp.

Contents
1. Intended purpose
2. Usage as client

a) Querying webservers
b) Forwarding ports
c) Talking to mailrelays
d) Determining a remote DNS server’s software

3. Usage as server
a) Remote shell demon
b) Capturing network traffic
c) Copying directory trees over some internet

4. Usage as portscanner
5. Links to advanced topics

Intended purpose
With netcat you can talk to arbitrary tcp- or udp-connections via stdin/out, e.g. from a shellscript.

netcat can either setup the connections itself (client-mode):

or answer them (server-mode):

Additionally netcat’s client-mode can be used as a portscanner.

The following documentation correlates to netcat 1.10 from 1996-03-20, which still is the most up to date
version today (2003).

Page: 1[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/netcat.en.html

Page: 2[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/netcat.en.html

Usage as client

Querying webservers
Try it yourself: When you query a webserver using shell redirection, telnet won’t wait for the server’s
response, but abort the connection at the end of it’s input:

$ printf ’GET / HTTP/1.0\n\n’ | telnet www.jfranken.de 80
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’^]’.
Connection closed by foreign host.
$

netcat performs better:

$ printf ’GET / HTTP/1.0\n\n’ | nc -w 10 www.jfranken.de 80
HTTP/1.0 200 OK
Server: thttpd/2.21b 23apr2001
Content-Type: text/html; charset=iso-8859-1
[...]
<HTML>
[...]
</HTML>

netcat will quit on the time when the connection closes down. the BTW: The parameter -w 10 makes sure,
that this happens maximum 10 seconds the after the the input has ended.

Forwarding ports
With netcat and inetd you can forward local ports to other hosts.

The following line in /etc/inetd.conf on host2 will locally provide host 3’s port 80.

80 stream tcp nowait nobody /usr/bin/nc /usr/bin/nc -w 3 host3 80

If you like logging and access control, you can change the first /usr/bin/nc to /usr/sbin/tcpd.

Talking to mailrelays
In my talk about ssh-tunnelling you can see a config file for exim, which forwards mails to certain domains
over a mail relay using ssh and netcat:

Page: 3[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/netcat.en.html

at bottom of TRANSPORT CONFIGURATION :

Transport, which tunnels mails over ssh to my smarthost
ssh:
 driver = pipe

 # talk regular smtp to the pipe (qmail approved :-))
 bsmtp = all
 bsmtp_helo = true
 use_crlf = true
 prefix = "
 suffix = "

 # connect to my mail server’s smtp port.
 # must authenticate without password
 command = ssh johannes.our-isp.org netcat -w 1 localhost smtp
 user = jfranken

 # ssh failure handling: kill hanging sessions,
 # retry and tell me on failures
 timeout = 300s
 temp_errors = 1
 return_fail_output = true

at top of ROUTERS CONFIGURATION:
t_online:
 driver = domainlist
 transport = ssh
 route_list = "^t-online\.(de|at|com)|t-dialin\.net$;\
 ^mail.com$;\
 ^lists.sourceforge.net$;\
 ^bigpond.com$;\
 ^aol.com$;\
 ^mathematik.tu-darmstadt.de$;"

The interesting point about this configuration is the cognition, that I can use any host, for which I have ssh
access, as a mail relay.

Determining a remote DNS server’s software
You can remotely determine the software a remote DNS server is running on:

$ dig @pns.dtag.de version.bind. txt CHAOS|grep -i "^V"
VERSION.BIND. 0S CHAOS TXT "BIND 8.3.4"

Of course, you can also do that with bash and netcat:

$ whatdns() {
 printf ’begin-base64 644 -\np8IBAAABAAAAAAAAB3ZlcnNpb24EYmluZAAAEAADCg==\n====’|
 uudecode| nc -uw 1 $1 domain | strings| tail -1; }
$ whatdns pns.dtag.de
BIND 8.3.4
$ whatdns 141.2.1.1
4.9.7

Page: 4[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/netcat.en.html

Usage as server
When you type

PROGRAM | nc -l -p PORT -w TIMEOUT

or

nc -l -p PORT -w TIMEOUT | PROGRAM

1. netcat will wait for exactly one connection to port PORT, then
2. attach to PROGRAM’s out- or input and
3. wait maximum TIMEOUT seconds for the connection to abort.

For ports below 1024, you need to be root.

If the port should be bidirectional (do input as well as output), you can type

nc -l -p PORT -e PROGRAM

Unfortunately netcat cannot pass parameters to PROGRAM, so you might need to supply a 2-lines
shellscript in most cases.

Because netcat quits at the end of the connection, it can only service one connection. Use the following
3-lines shellscript, if you want netcat to accept multiple (successive or concurrent) sessions:

$ cat <<’EOF’>mydemon
#!/bin/bash
export port=${port:-$1} # inherit $1 as $port
nc -l -p $port -e $0 & # await further connections on this port
[$1]|| PROGRAM # do the work (not for the first invocation)
EOF
$ chmod +x mydemon
$./mydemon 3000
$

The -e parameter will only work, if netcat has been compiled with the option -DGAPING_SECURITY_HOLE
set. For Debian GNU/Linux 3.0, this is true.

Remote shell demon
With the following shellscript, you can start your personal remote shell demon:

Page: 5[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/netcat.en.html

#!/bin/bash
pershd - personal shell demon
2003-02-17 Johannes Franken - jfranken@jfranken.de

on first invocation, export $PW and $port to subshells
export PW port
if [$1] ; then
 port=$1
 echo -n pass:
 read PW
fi

do we know the port to listen on?
if [! $port]; then
 echo USAGE: $0 port ;
 exit;
fi

wait for further connections (veiling params)
echo "-l -p $port -e $0" | nc 2>/dev/null &
[$1] && exit; # first invocation exit here

ask for password
unset p
until ["$p" = "$PW"]; do
 echo -n pass:
 read p
done

received good password. present a shell
bash --noediting -i

When I start this script, it asks me to tell it a password and then waits for connections in the background:

jfranken@tp:~$./pershd 1234
pass:secret
jfranken@tp:~$

With this password I can now access my shell from remote hosts:

$ nc tp.jfranken.de 1234
pass:secret
jfranken@tp:~$
jfranken@tp:~$ exit
exit
$

Capturing network traffic
Sniffing tools like tcpdump, snoop, iptraf or ethereal are quite popular for debugging network applica-
tions. But in order to use them, you need to be root. With netcat you can also capture network connections
as a normal user: just point your application to a local netcat, which loggs everything and then forwards it to
the server.

Page: 6[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/netcat.en.html

To do so, just replace the term PROGRAM in the above mydemon-script with

netcat -o /tmp/sniffer.‘date +%s.$$‘ tp.jfranken.de 80

and call it with parameter 4321. netcat will now create a logfile for each access to that port in your
/tmp-directory.

For example: After I had opened http://localhost:4321 with my browser, there was the following
logfile:

$ cat /tmp/sniffer.1045474262.5864
> 00000000 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 31 0d 0a # GET / HTTP/1.1..
> 00000010 55 73 65 72 2d 41 67 65 6e 74 3a 20 4f 70 65 72 # User-Agent: Oper
> 00000020 61 2f 36 2e 31 31 20 28 4c 69 6e 75 78 20 32 2e # a/6.11 (Linux 2.
[...]
< 00000000 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d # HTTP/1.1 200 OK.
< 00000010 0a 53 65 72 76 65 72 3a 20 74 68 74 74 70 64 2f # .Server: thttpd/
< 00000020 32 2e 32 31 62 20 32 33 61 70 72 32 30 30 31 0d # 2.21b 23apr2001.
< 00000030 0a 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 74 # .Content-Type: t
[...]
< 00002180 0a 3c 2f 46 52 41 4d 45 53 45 54 3e 0a 3c 2f 48 # .</FRAMESET>.</H
< 00002190 54 4d 4c 3e 0a # TML>.

Copying directory trees over some internet
With netcat, (gnu)tar and bash, you can copy directory trees from one host to another. The files are trans-
fered compressed and with all their attributes (permissions/modification times).

To receive a file, I let netcat listen on port 51330, and redirect it’s output to a tar:

$ alias receive=’nc -vlp 51330 | tar xzvp’
$ receive
listening on [any] 51330 ...

On the sending host you call a shell function, which tars the given files/directories and sends them to port
51330 at the receiving host.

$ send() { j=$*; tar cpz ${j/%${!#}/}|nc -w 1 ${!#} 51330;}
$ send dir* tp.jfranken.de

For those not familiar with bash-o-magic:

${!#} returns the last parameter (the hostname),
${j/%${!#}/} any others (list of files or directories).

Page: 7[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/netcat.en.html

Usage as portscanner
Used like this, netcat will test some host for open ports:

nc -vz PARAMETER hostname PORTRANGES

Possible values for PARAMETER are:

Parameter Meaning

-v show the closed ports as well

-w <seconds> timeout for connection setup

-u udp instead of tcp. Best used together with -w

-r try the ports in random order

-i <seconds> delay after each tested port

Examples for a tcp- and an udp-scan:

$ nc -vz www.jfranken.de 1-1024
www.jfranken.de [195.88.176.20] 443 (https) open
www.jfranken.de [195.88.176.20] 110 (pop3) open
www.jfranken.de [195.88.176.20] 80 (www) open
www.jfranken.de [195.88.176.20] 53 (domain) open
www.jfranken.de [195.88.176.20] 25 (smtp) open
www.jfranken.de [195.88.176.20] 22 (ssh) open
$
$ nc -vz -vur -i 1 -w 2 localhost 1024 108-112
localhost [127.0.0.1] 1024 (?) open
localhost [127.0.0.1] 109 (pop2) : Connection refused
localhost [127.0.0.1] 112 (?) : Connection refused
localhost [127.0.0.1] 111 (sunrpc) open
localhost [127.0.0.1] 110 (pop3) : Connection refused
localhost [127.0.0.1] 108 (?) : Connection refused
 sent 0, rcvd 0

Links to advanced topics
The netcat(1) manpage
The netcat README file

Page: 8[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/netcat.en.html

	netcat
	Contents
	Intended purpose
	Usage as client
	Querying webservers
	Forwarding ports
	Talking to mailrelays
	Determining a remote DNS server's software

	Usage as server
	Remote shell demon
	Capturing network traffic
	Copying directory trees over some internet

	Usage as portscanner
	Links to advanced topics

