
Time synchronization in internets
Johannes Franken

<jfranken@jfranken.de>

When you try to compare some files’ timestamps or the contents of logfiles, which were generated on differ-
ent computers, you’ll appreciate their time being synchronous. It’s even better, if it matches the international
atomic time.

On this page I give an overview over the tools and protocols commonly used for synchronizing times.

Contents
1. The daytime protocol
2. The time protocol

a) rdate
b) netdate
c) localtimed

3. The network time protocol (NTP)
a) ntpdate
b) (x)ntpd
c) ntpq
d) ntpdc
e) Further readings

4. The simple network time protocol (SNTP)
a) net time, w32time

5. The SMB-protocol
a) Under LanManager (net time)
b) Under Linux (nettime)

6. Other ways
a) The Transmission Control Protocol (TCP)
b) The Internet Control Message Protocol (ICMP)
c) The internet Protocol (IP)

Page: 1[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ntpd.en.html

The daytime protocol
In 1983 the daytime protocol was specified as RFC867 . Today the daytime-server is built into inetd, listening
on port 13 and telling the local time in plain text:

$ netcat hamster 13
Tue Sep 3 19:04:14 2002

Unfortunately it does not bind to a date format, so you have to agree upon a format before utilizing its
service. Some implemetations even lack a timezone, which leads to problems when entering DST. Since the
minimal unit is a second, the displayed time can differ from the real time as much as one second plus
network delay.

Page: 2[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ntpd.en.html

http://www.rfc-editor.org/rfc/rfc867.txt

The time protocol
The time protocol was published as RFC868 , in order to simplify automated processings of times. Today the
time-server is built into inetd, listening on port 37 and telling the number of seconds that have passed since
July 1st 1900 (0am, GMT). The deviants are the same as for the the daytime protocol.

Here’s how the query works in pratice:

$ netcat hamster 37 | od -t u1
0000000 193 31 128 156
0000004

The time server delivers a 4 byte word. Transforming to a number:

$ echo ’156 + 128*256 + 31*256*256 + 193*256*256*256’ | bc
3240067228

Skipping 70 years (due to input range limitations of gnu date)

$ echo 3240067228 -2208988800 | bc
1031078428

So what date is now, 1031078428 seconds after 1970?

$ date -d "1970-01-01 0:00:1031078428"
Tue Sep 3 19:40:28 CEST 2002

If you’ve got a newer (after 2003?) implementation of GNU date, use this syntax instead:

$ date -d "19700101 + 1031078428 seconds"
Tue Sep 3 19:40:28 CEST 2002

rdate
The most used tool for copying times over the time protocol is rdate, For example,

$ rdate -p hamster
Wed Sep 4 19:46:13 2002

shows you the time at the computer hamster. If you run it as root and without the -p parameter, It will adopt
that time to your local machine. Of course, you can have cron call this regularly.

More about:
see rdate(8) manpage

It’s bit of a problem with rdate, that it can easily spread false system times.

netdate
Better use the netdate tool, which first compares the times of of several time servers and then adopts the
one from the first of the largest group of hosts whose times agree with each other within a certain limit.

Page: 3[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ntpd.en.html

http://www.rfc-editor.org/rfc/rfc868.txt

$ netdate tcp hamster gate hera
hamster -0.738 Wed Sep 4 20:35:16.000
gate -0.742 Wed Sep 4 20:35:16.000
hera -1.479 Wed Sep 4 20:35:16.000
hamster -0.481 Wed Sep 4 20:35:17.000

More about:
see netdate(8) manpage

localtimed
Because time-servers send GMT-time, clients need to add the hours for their timezones and DST (if applica-
ble) themselves to get the local time.

Unfortunately there still are some time-clients out (e.g. embedded in card readers), which interpret the trans-
mitted time as local time. To work around this problem, I wrote a localtime-demon, which sends the server’s
local time (incl. timezone/DST).

Download: localtimed [1 kB]

Page: 4[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ntpd.en.html

The network time protocol (NTP)
The NTP-protocol was invented by Professor Dr. David L. Mills in 1985. Today it is widely used in an revised
version 3 (RFC1305). Today, there also is version 4, which adds support for IPv6.

A NTP-client receives the time (incl. milliseconds) from several timeservers. After some inspection and the
use of smart, mathematical algorithms, it can choose the best server and strip the round-trip-time. Thus, the
time calculated is normally less than 50ms off the timeserver’s.

ntpdate
The ntpdate program adopts the time from the ntp-server specified at the command line.

$ /etc/init.d/ntp stop
Stopping NTP server: ntpd.
$ ntpdate -b gate
8 Sep 18:48:58 ntpdate[26171]: step time server 192.168.42.1 offset -0.000031 sec

If you do not pass the -b parameter, it will accelerate or decelerate the lokal clock until it’s correct, in order to
avoid time steps. This way one run of ntpdate can take hours. So, if you want to run ntpdate on system
startup (e.g. from /etc/init.d/ntpdate), be sure to set the -b parameter.

BTW: ntpdate cannot change the system time, while there is a ntpd process active on the same host. If
ntpdate aborts with the following message:

8 Sep 18:50:42 ntpdate[4671]: the NTP socket is in use, exiting

you most likely forgot to turn off ntpd.

More about:
see ntpdate(1) manpage

(x)ntpd
The (x)ntpd [(Experimental) Network Time Protocol Demon] is for permanent synchronization. Due to its
mathematical design features, it gives you precision in the range of nanoseconds while using minimal
network bandwith. It will

1. query several ntp-servers or other devices (e.g. DCF-77 or GPS receivers) in special intervals,
2. deduct any delays caused by the network,
3. sort its time sources by reliability,
4. correct minor deviations by ascending or descending the local clock, in order to avoid time steps.
5. adjust the local clock’s speed permanently, so that it can stay synchronous even without a network if the

room temperature’s constant.
6. provide its time to the network over ntp, selectably

on request (unicast),
as regular brodcasting in your local network segment, or
as multicast stream to a number of subscribers

7. offer mutual authentification to prevent damages caused by unauthorized servers or clients.

Normally you’ve got one timeserver in your LAN, which synchronizes its time with public Internet timeservers
and provides it to all of your local clients.

Here’s the configfile /etc/ntp.conf for all clients:

Page: 5[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ntpd.en.html

http://www.rfc-editor.org/rfc/rfc1305.txt
http://www.eecis.udel.edu/~ntp/ntp_spool/html/ntpdate.html

driftfile /var/lib/ntp/ntp.drift
server 192.168.42.1 burst

Explanations:

The driftfile stores cognitions about the local clock’s inaccuracies, so that they’re still available after
restarting ntpd or rebooting the machine.
The host 192.168.42.1 serves as your timeserver in unicast-mode.
It will be queried in burst-mode, which vitally speeds up the measurement of reliabilities and network
delays. As a consequence thereof the network load for the first 30 seconds and after each network
connection loss will be 8 times the usual, but, well, on a 100Mbit/s LAN you won’t notice this.

and here’s the configfile /etc/ntp.conf for the server:

driftfile /var/lib/ntp/ntp.drift
server ntp2.ptb.de minpoll 4 maxpoll 10
server xlink1.xlink.net minpoll 4 maxpoll 10
server willow.fernuni-hagen.de minpoll 4 maxpoll 10
server ws-lei1.win-ip.dfn.de minpoll 4 maxpoll 10
server tuminfo1.informatik.tu-muenchen.de minpoll 4 maxpoll 10
server NTP.HEH.Uni-Oldenburg.DE minpoll 4 maxpoll 10
server ntps2.gwdg.de minpoll 4 maxpoll 10
server ntp.rz.tu-harburg.de minpoll 4 maxpoll 10
server ntp.nml.csiro.au minpoll 4 maxpoll 10
server ntp0.fau.de minpoll 4 maxpoll 10
server clock.tl.fukuoka-u.ac.jp minpoll 4 maxpoll 10
server goodtime.ijs.si minpoll 4 maxpoll 10
server tick.usno.navy.mil minpoll 4 maxpoll 10
server time-nw.nist.gov minpoll 4 maxpoll 10

Explanations:

the minpoll--parameter tells ntpd the time interval to query a server at the first time and after each
network failure. Possible values are:

Value Interval

4 16 seonds

5 32 seonds

6 64 seonds

... ...

17 36.4 hours

the maxpoll-parameter tells ntpd the time interval to query the servers when the connection’s been
fluent for some time.

More about:
see ntpd(1) manpage

ntpq
The ntpq command supplies you with a shell for status queries about a given timeserver. If you don’t
provide a timeserver on the command line, it will use localhost.

Page: 6[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ntpd.en.html

http://www.eecis.udel.edu/~ntp/ntp_spool/html/ntpd.html

$ ntpq
ntpq> help
Commands available:
addvars associations authenticate cl clearvars
clocklist clockvar cooked cv debug
delay exit help host hostnames
keyid keytype lassociations lopeers lpassociations
lpeers mreadlist mreadvar mrl mrv
ntpversion opeers passociations passwd peers
poll pstatus quit raw readlist
readvar rl rmvars rv showvars
timeout version writelist writevar
ntpq> quit

The most interesting of those commands is peers. You can also reach it directly (that is, without using the
shell), if you specify the -p-parameter on the command line.

$ ntpq -pn gate
 remote refid st t when poll reach delay offset jitter
==
*192.53.103.104 .PTB. 1 u 519 1024 377 44.966 0.762 0.689
-193.141.40.1 192.53.103.104 2 u 80 1024 377 53.898 -4.443 8.575
+132.176.114.23 192.53.103.104 2 u 83 1024 377 74.690 0.338 0.024
#193.174.75.162 192.76.176.253 3 u 72 1024 377 46.868 1.128 0.142
#131.159.0.1 131.159.0.76 3 u 84 1024 377 61.069 -3.552 0.441
-134.106.148.1 131.188.3.222 2 u 77 1024 377 129.458 -11.106 11.891
-134.76.98.232 192.53.103.103 2 u 71 1024 367 46.386 1.660 1.055
 134.28.202.15 0.0.0.0 0 u - 1024 0 0.000 0.000 4000.00
+130.155.98.1 .ATOM. 1 u 81 1024 371 348.563 1.065 0.051
 131.188.3.220 .GPS. 1 u 12h 1024 0 0.000 0.000 4000.00
-133.100.11.8 .GPS. 1 u 133 1024 357 385.072 -7.701 0.799
-193.2.4.2 .GPS. 1 u 1106 1024 376 83.967 -3.170 0.057
-192.5.41.40 .PSC. 1 u 27 1024 377 157.448 11.293 10.819
-131.107.1.10 .ACTS. 1 u 78 1024 377 280.552 -26.444 37.160

Explanations: The table shows one row for each server configured. The meaning of the columns is as
follows:

Page: 7[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ntpd.en.html

Column Explanation

The first charac-
ter

tells the quality of the server:

* The best source. Its time is currently taken as reference.

+
#
-
.

acceptable qualities, sorted descending

x falseticker

 (Leerzeichen) no answer or depending on the local host

remote
the IP address or (if ntpq was called without the -n parameter) the hostname of the
server.

refid
the IP address or (if ntpq was called without the -n parameter) the hostname of the
server.

st
the stratum, that is, how many hops the server is away from a primary time source (e.g.
an atomic clock)

t

the connection type:
l=local,
u=unicast,
m=multicast,
b=broadcast

when how many seconds ago the server was queried the last time

poll the interval (seconds) to query the server.

reach the reachability of the server in octal digits, from 0 (never) to 377 (always).

delay,
offset,
jitter

some statistical values (in milliseconds). The less, the better.

More about:
see ntpq(1) manpage

ntpdc
The ntpdc tool is for remote configuration of a running ntp server.

More about:
see ntpdc(1) manpage

Further readings
Network Time Synchronization Project

Page: 8[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ntpd.en.html

http://www.eecis.udel.edu/~ntp/ntp_spool/html/ntpq.html
http://www.eecis.udel.edu/~ntp/ntp_spool/html/ntpdc.html
http://www.eecis.udel.edu/~mills/ntp.html

The simple network time protocol (SNTP)
In 1996, Dr. Mills explained, that everybody, who does not need the precision of NTP, can limit the
NTP-protocol to single server requests. He called this method "Simple Network Time Protocol" (SNTP) and
documented it in RFC2030 .

net time, w32time
Windows (2000, 2003 and XP) come with two SNTP-clients:

w32time is a system service, which automatically copies the time in given intervals.
net time is a program to manually request the time and to configure w32time.

Command Effect

net time
/setsntp:server1,server2,...

to select the timeservers

net time /querysntp displays the selected timeservers

net stop w32time
net start w32time

stopps and starts the regular queries to the time-
servers.

Page: 9[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ntpd.en.html

http://www.rfc-editor.org/rfc/rfc2030.txt

The SMB-protocol

Under LanManager (net time)
OS/2, MS-DOS, Windows 95, 98, NT3 and NT4 come with the NET program, with with you can copy the time
from windows-hosts, that have server services (netbios-ssn, TCP-Port 139) enabled, over the SMB-protocol.

C:\PROGRA~1> net time \\mausi /set /yes

Attention: Starting with Windows 2000, the NET-command changed from SMB- to the SNT-Protocol.

Under Linux (nettime)
Since samba 3.0, the net-command is part of the samba distribution.

If you are looking for a standalone version of NET TIME , you will find a solution in nettime:

$ nettime //mausi
Current system time set to Wed Sep 4 21:07:18 2002

Here is a statically linked binary for Linux:
 nettime2.bz2 [285 kB]

and here its source code as samba 2.0.7 module:
 nettime.c [8 kB]

Page: 10[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ntpd.en.html

Other ways

The Transmission Control Protocol (TCP)
Linux places the kernel livetime (5 bytes, in hundreth of a second) in the options at the end of any tcp
header.

$ tcpdump host mausi & telnet mausi 22
[1] 25912
tcpdump: listening on eth0
12:16:15.513290 hamster.jfranken.de.ssh > gate.jfranken.de.2156:
P 3146288727:3146288759(32) ack 3154615717 win 8576
<nop,nop,timestamp 104273773 49599748> (DF) [tos 0x10]
^C
$ bc
scale=5
104273773/100/60/60/24
12.06872

0.06872*24
1.64928

0.64928*60
38.95680
quit
$ uptime
12:22:27 up 12 days, 1:38, 4 users, load average: 0.00, 0.00, 0.00

The Internet Control Message Protocol (ICMP)
Professor David L. Mills described the Internet Clock Service (see RFC778) in 1981. It would transmit the
time (without the date) in milliseconds since midnight via ICMP packets of type 14 (see RFC792). For this
purpose, W. Richard Stevens wrote the icmptime program, which compares the local time to a remote
host’s. It’s available at ftp://ftp.uu.net/published/books/stevens.tcpipv1.tar.Z

The internet Protocol (IP)
RFC781 from the year 1981 describes, that one could already do that in the IP header. As far as I know,
there hasn’t been a practical implementation of this service.

Page: 11[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ntpd.en.html

http://www.rfc-editor.org/rfc/rfc778.txt
http://www.rfc-editor.org/rfc/rfc792.txt
ftp://ftp.uu.net/published/books/stevens.tcpipv1.tar.Z
http://www.rfc-editor.org/rfc/rfc781.txt

	Time synchronization in internets
	Contents
	The daytime protocol
	The time protocol
	rdate
	netdate
	localtimed

	The network time protocol (NTP)
	ntpdate
	(x)ntpd
	ntpq
	ntpdc
	Further readings

	The simple network time protocol (SNTP)
	net time, w32time

	The SMB-protocol
	Under LanManager (net time)
	Under Linux (nettime)

	Other ways
	The Transmission Control Protocol (TCP)
	The Internet Control Message Protocol (ICMP)
	The internet Protocol (IP)

