
Version control with RCS
Johannes Franken

<jfranken@jfranken.de>

On this page I show the use of a version control system, instancing the GNU Revision Control System.

Contents
1. Version control
2. The GNU Revision Control System (RCS)

a) Overview
b) Installing and configuring GNU RCS

3. Working with archives
a) ci
b) co
c) rcs
d) rcsfreeze
e) rcsclean
f) merge

4. Working with keywords
a) Keywords
b) ident

5. Working with branches
a) Overview
b) Creating a new branch
c) Retrieving a version from a branch
d) rcsmerge

6. Evaluating archive files
a) rlog
b) rcs2log (CVS)
c) rcsdiff

7. Outlook: CVS

Version control
The usage of a version control system enables the following operations:

Undo: restore past states of a file’s content.
Teamwork: Editing the same set of files with several users. If they happen to change the same file by
mistake, the last saving author would overwrite all other user’s changes, their work would be lost. A
version control system would analyze each user’s changed lines and put them together as if they had
worked on that file sequentially.
Changelogs: output any changes: per user, time or file/directory.
Branches: If you break down your development to different branches, you can first test each bugfix or
configuration change in a development tree, and on success apply it to "at the push of a button" to the
official tree.

It’s obvious, that using these capabilities has a positive impact on both the efficiency and quality of team
works.

Page: 1[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/rcs.en.html

The GNU Revision Control System (RCS)

Overview
RCS was developed from 1992 to 1995 as free software by Walter F. Tichy and Paul Eggert. The following
documentation refers to GNU RCS version 5.7, which was released in 1995, but is still the current version
today (2003).

Theoretical basics: see Tichy-RCS-Paper (21 pages PDF).

RCS creates one archive file for each work file, in which it stores the evolution as deltas. The transfer to and
from the archive files is done by the programs ci (for "check-in") und co (for "check-out"). In order to protect
against mutual overwriting, users can only check into those branches, which they had locked before. And
finally, there are some tools for administration and reporting.

Installing and configuring GNU RCS
You ideally install GNU RCS from a package, on Debian 3.0 for example using the following command:

$ apt-get install rcs

RCS does not require any configuration, but you can preset some of your commonly used options with the
RCSINIT variable:

Option Meaning

-q quiet

-V4 or -V3 to check-out from archives, which were created with RCS version 3 or 4

-xSUFFIX Suffix and directory of the archive files

-zLT Print the local time and timezone instead of GMT for keywords

Example:

$ echo ’export RCSINIT="-zLT -q"’ >> ~/.bashrc

If you want to separate your work files from the archive files, you can create a RCS-directory underneath
each directory that holds working files. Archive files will then be put and looked for in that directory, unless
you supply a differing location with the -x parameter.

Page: 2[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/rcs.en.html

Working with archives

ci
ci ("check-in") adds a new version of a work file to its archive file. At the first invocation for each work file it
will automatically create the archive file.

Example:

$ ls -l
-rw-r--r-- 1 jfranken users 15 10. Jan 14:25 myfile.txt
$ cat myfile.txt
RCS-Test
Nr. 1
$ ci -l myfile.txt
myfile.txt,v <-- myfile.txt
enter description, terminated with single ’.’ or end of file:
NOTE: This is NOT the log message!
>> test check-in
>> .
initial revision: 1.1
done
$ ls -l
-rw-r--r-- 1 jfranken users 15 10. Jan 14:25 myfile.txt
-r--r--r-- 1 jfranken users 223 10. Jan 14:25 myfile.txt,v
$ echo + Nr. 2 >> myfile.txt
$ ci -l myfile.txt
myfile.txt,v <-- myfile.txt
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single ’.’ or end of file:
>> addition Nr. 2
>> .
done
$ ls -l
-rw-r--r-- 1 jfranken users 23 10. Jan 14:33 myfile.txt
-r--r--r-- 1 jfranken users 351 10. Jan 14:34 myfile.txt,v
$

You can pass an arbitrary status text after the -s parameter (e.g stable), to make that version easier to
find.

Locking:
Only the user owning the lock (write access) to a branch can check-in a new version. The -l parameter
makes him keeping the lock, whereby he stays authorized to check-in further changes. The remainder of the
users will then see the following message, when they try to check-in:

$ ci -l myfile.txt
myfile.txt,v <-- myfile.txt
ci: myfile.txt,v: no lock set by bfranken

Page: 3[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/rcs.en.html

Before they can check-in their changes, they need to either

wait for the lock to be removed (by the owner running ci without -l or with -u) and then adopt the
predecessor’s changes.
break the lock administratively (see rcs), or
opt for another branch (see branches).

The -u-parameter prevents ci from deleting the working file after the check-in.

More about:
More options: see ci(1) manpage

co
co ("check-out") retrieves a work file from its archive file.

If you append the parameter -p, co will print the version to STDOUT.

Selecting a version to check-out:
Normally co will check-out the most up to date version.

With the -r parameter you can specify a different version to check-out:

$ ls -l
-r--r--r-- 1 jfranken users 337 10. Jan 15:48 myfile.txt,v
$ co -r1.1 myfile.txt,v
myfile.txt,v --> myfile.txt
revision 1.1
done
$ ls -l
-r--r--r-- 1 jfranken users 15 10. Jan 15:49 myfile.txt
-r--r--r-- 1 jfranken users 337 10. Jan 15:48 myfile.txt,v
$

With the -d-parameter you can request the last version checked-in before a given date; with -w, co will
consider updates by one author only, and with -s those matching some status text.

Locking:

co creates the work files write protected. If you want to modify and check them in, you have set the -l
parameter to apply for a lock.

$ co -l myfile.txt
myfile.txt,v --> myfile.txt
revision 1.2 (locked)
done

This will only work as long as no other user has already locked this branch. If one has, co will come up with
the following error message:

Page: 4[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/rcs.en.html

$ co -l myfile.txt
myfile.txt,v --> myfile.txt
co: myfile.txt,v: Revision 1.2 is already locked by jfranken.

In this case you should ask the owner of the lock to check-in his changes using ci (without -l), or (if it’s an
emergency) break the lock administratively with rcs -u.

More about:
More options: see co(1) manpage

rcs
rcs changes archive files. You can use it to

assign (-l) or revoke (-u) the lock to/from some user,
subsequently modify a version’s changelog (-m) or state (-s),
delete a version (-o),
modify the description (-t) or
grant (-a) or deny (-e) check-in access to particular users.

More about:
More options: see rcs(1) manpage

rcsfreeze
rcsfreeze is a shell script, which assigns a common version name to the latest version of each archive file.

In this example, rcsfreeze was called, when file1.txt was at version 1.2 and file3.txt at 1.1.
file2.txt has not been changed since then. rcsfreeze labeled this combination C_1.

So, what’s all that in aid of, you ask? - You can alternatively use a version name in place of a date on
check-out:

$ for a in RCS/*,v; do co -rC_1 $a; done

More about:
More options: see rcsfreeze(1) manpage

Page: 5[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/rcs.en.html

rcsclean
rcsclean removes any unlocked (i.e. checked out without -l) work files from the current directory.

$ ls -l
-r--r--r-- 1 jfranken users 23 20. Jan 22:05 myfile.txt
-r--r--r-- 1 jfranken users 346 20. Jan 22:04 myfile.txt,v
$ rcsclean
rm -f myfile.txt
$ ls -l
-r--r--r-- 1 jfranken users 346 20. Jan 22:04 myfile.txt,v
$

If you set the -u parameter, rcsclean will also remove any locked files, that have not been changed, and
release their locks.

More about:
More options: see rcsclean(1) manpage

merge
merge combines the changes, that were made by two authors on copies of a textfile.

Example: Let us assume, a file originally contains the following lines:

$ cat orig
Q1: Why do ducks have big flat feet?

Q2: Why do elefants have big flat feet?

Now, let two users copy and modify that file. Maybe one works out the top part:

$ cat changed1
Q1: Why do ducks have big flat feet?
A1: To stamp out forrest fires.

Q2: Why do elefants have big flat feet?

and the other the bottom part:

$ cat changed2
Q1: Why do ducks have big flat feet?

Q2: Why do elefants have big flat feet?
A2: To stamp out flaming ducks.

Then you can have merge combine these changes:

$ merge -p changed1 orig changed2
Q1: Why do ducks have big flat feet?
A1: To stamp out forrest fires.

Q2: Why do elefants have big flat feet?
A2: To stamp out flaming ducks.

If the users blunderingly changed the same lines, merge will mark them as "conflicting":

Page: 6[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/rcs.en.html

$ echo ’A2: No idea :-(’ >> changed1
$ merge -p changed1 orig changed2
Q1: Why do ducks have big flat feet?
A1: To stamp out forrest fires.

Q2: Why do elefants have big flat feet?
<<<<<<< changed1
A2: No idea :-(
=======
A2: To stamp out flaming ducks.
>>>>>>> changed2
merge: warning: conflicts during merge

More about:
More options: see merge(1) manpage

Page: 7[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/rcs.en.html

Working with keywords

Keywords
If you use the following keywords in your work files, RCS will enrich them them with appropriate values:

Keyword Value

$Author$ The Unix username of the user who checked in this file

$Date$ Date and Time of check-in

$Header$ Filename (incl. full path), date, author, state

Id Filename (without path), date, author, state

Log The Changelog

$Name$ The symbolic name used to check-out this version

$Source$ The filename of the archive file (with path)

$RCSFile$ Filename of the archive file (without path)

$Revision$ The version number

$State$ The status text (defaults to Exp)

ident
ident prints any keywords and values contained in the files provided.

Example: I use the wml-compiler to build my webpages (*.html) from one *.wml- and several *.inc-files.
The ident-tool tells me any source versions used for generating each webpage:

$ ident -q ssh2.wml ssh2.de.html
ssh2.wml:
 $Id: rcs.wml,v 1.16 2006/01/06 19:54:46 jfranken Exp $

ssh2.de.html:
 $Id: rcs.wml,v 1.16 2006/01/06 19:54:46 jfranken Exp $
 $Id: template.inc,v 1.29 2003/01/02 13:58:47 jfranken Exp

As a result you can see, that the target ssh2.de.html was derived from ssh2.wml in its present form plus
template.inc v1.29.

More about:
More options: see ident(1) manpage

Page: 8[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/rcs.en.html

http://www.thewml.org/

Working with branches

Overview
Branches allow you to test your set of special changes first, and check them in on success, combining them
with any other changes that may have appeared in the meantime. This way you have a chance to spot and
fix incompatibleness between several bugfixes apart from the official release.

For complex software projects it’s advised to permanently practice multiple development trees, like "unsta-
ble", "testing" and "stable".

The version number determines the branch a version belongs to: The first branch deriving from x.y contains
the version numbers x.y.1.1 to x.y.1.n, the second branch x.y.2.1 to x.y.2.n and so on.

Creating a new branch
To create a new branch, you only need to supply a version number at check-in, which has one more digit
than the one it’s basing on:

$ ci -l -r1.2.1 myfile.txt
myfile.txt,v <-- myfile.txt
new revision: 1.2.1.1; previous revision: 1.2
enter log message, terminated with single ’.’ or end of file:
>> test branch
>> .
done

Retrieving a version from a branch
To retrieve a version from a branch, you only need to supply the desired version number at check-out:

$ co -l -r1.2.1.1 myfile.txt,v
myfile.txt,v --> myfile.txt
revision 1.2.1.1 (locked)
done

If you later want to check this version into the same branch, just check-in as usual:

Page: 9[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/rcs.en.html

$ echo goes to same branch >> myfile.txt
$ ci myfile.txt
myfile.txt,v <-- myfile.txt
new revision: 1.2.1.2; previous revision: 1.2.1.1
enter log message, terminated with single ’.’ or end of file:
>> checking ci for branches
>> .
done

rcsmerge
rcsmerge applies the changes between some versions to a work file. This way you can combine the
bugfixes checked into different branches, to a new, general work file.

More about:
More options: see rcsmerge(1) manpage

Page: 10[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/rcs.en.html

Evaluating archive files

rlog
With rlog you can peek into archive files:

$ rlog *,v
RCS file: myfile.txt,v
Working file: myfile.txt
head: 1.2
branch:
locks: strict
access list:
symbolic names:
 C_1: 1.2
keyword substitution: kv
total revisions: 4; selected revisions: 4
description:
test checkin

revision 1.2
date: 2003/01/10 13:34:20; author: jfranken; state: Exp; lines: +1 -0
branches: 1.2.1;
addition Nr. 2

revision 1.1
date: 2003/01/10 13:25:44; author: jfranken; state: Exp;
Initial revision

revision 1.2.1.2
date: 2003/01/27 06:22:19; author: jfranken; state: Exp; lines: +1 -0
checking ci for branches

revision 1.2.1.1
date: 2003/01/24 14:56:54; author: jfranken; state: Exp; lines: +1 -0
test branch
===

More about:
More options: see rlog(1) manpage

rcs2log (CVS)
rcs2log is shipped with the CVS packet. It generates changelogs from your archive files. If you don’t
specify any archive files, it will look for them in all subdirectories.

$ rcs2log -v
2003-01-27 Johannes Franken <jfranken@tp>

 * myfile.txt 1.2.1.2: checking ci for branches

2003-01-24 Johannes Franken <jfranken@tp>

 * myfile.txt 1.2.1.1: test branch

2003-01-10 Johannes Franken <jfranken@tp>

 * myfile.txt 1.2: addition Nr. 2

 * myfile.txt 1.1: New file.

Page: 11[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/rcs.en.html

More about:
More options: see rcs2log(1) manpage

rcsdiff
rcsdiff shows the differents between two versions of a file.

Examples:

Comparing the work file against the archive file’s most up to date version:

$ rcsdiff -q myfile.txt,v
$

Result: No differences. The work file has not been changed since it was last checked in or out.
Comparing the work file against an older version from the archive file:

$ echo ’and Nr. 3’ >> myfile.txt
$ rcsdiff -q -r1.1 myfile.txt,v
2a3,4
> + Nr. 2
> and Nr. 3
$

Result: In contrast to version 1.1, the work file has additional lines 3 to 4, which append after line 2 and
contain some text a/m.
Comparing two versions from the archive file:

$ rcsdiff -q -r1.1 -r1.2 myfile.txt,v
2a3
> + Nr. 2
$

Result: The difference between versions 1.1 and 1.2 is, that version 1.2 has a third line appended after
the second, containing + Nr. 3.

More about:
More options: see rcsdiff(1) manpage

Outlook: CVS
The Concurrent Versions System (CVS) extends RCS by the following capabilities:

Subdirectories
Server-interface (pipes or TCP-ports)
Automatic execution of scripts at check-in (automated build system, ABS)

More about:
More options: see cvs(1) manpage

Page: 12[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/rcs.en.html

	Version control with RCS
	Contents
	Version control
	The GNU Revision Control System (RCS)
	Overview
	Installing and configuring GNU RCS

	Working with archives
	ci
	co
	rcs
	rcsfreeze
	rcsclean
	merge

	Working with keywords
	Keywords
	ident

	Working with branches
	Overview
	Creating a new branch
	Retrieving a version from a branch
	rcsmerge

	Evaluating archive files
	rlog
	rcs2log (CVS)
	rcsdiff

	Outlook: CVS

