
OpenSSH
Section 1: The basics

Johannes Franken
<jfranken@jfranken.de>

People think, that ssh is just some kind of telnet with encryption on top. On this page I show what makes
OpenSSH 3.x better than telnet .

Contents
1. What’s OpenSSH?

a) How to get it
b) Components
c) Alternatives to OpenSSH

2. ssh protocols
3. Configuration

a) Client-configuration
b) Server-configuration

4. Login Sessions
a) Escape-commands
b) Starting interactive programs automatically

5. Encryption
6. Compression
7. Public key authentication

a) ssh-keygen
b) Using hostkeys

i) known_hosts
ii) ssh-keyscan

c) Using identity keys
i) authorized_keys
ii) ssh-copy-id

d) Logging in without a password
i) Empty passphrase
ii) ssh-agent, ssh-add

8. Further readings

Page: 1[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

What’s OpenSSH?
OpenSSH is an implementation of the ssh protocol suite. It’s open source and continuously being developed
further by the OpenSSH project team, see http://www.openssh.org

How to get it
OpenSSH has been compiled for any operating systems, and is shipped with most linux or BSD distributions.

An excellent windows port using the CygWin32 libaries is available at http://www.networksimplic-
ity.com/openssh/

Components
The OpenSSH-distribution contains the following programs:

Name Purpose

ssh
is the ssh-client. It initiates the connection to a ssh-server. See detailed description in the
next chapters.

sshd
is the ssh-server. It accepts connections from ssh-clients. For details, see configuration
notes

ssh-keygen creates and converts keys. For details, see below.

ssh-agent ,
ssh-add

keeps the decyphered privatekey in memory, where clients can access it. For details, see
below.

ssh-keyscan displays the hostkey of a ssh-server. For example uses, see below.

Alternatives to OpenSSH
Putty is free ssh client implementation, which - in contrast to the client that comes with OpenSSH - has got a
graphical user interface. Get a version for Windows at http://www.chiark.greenend.org.uk/~sgtatham/putty/ .
Finally, putty is available for Linux, too.

Of course, there are some commercial suppliers as well, e.g. http://www.ssh.com und
http://www.f-secure.com On top of the possibilities of OpenSSH they contain programs for central configura-
tion of servers, keys and tunnels.

Page: 2[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

http://www.openssh.org/
http://www.networksimplicity.com/openssh/
http://www.networksimplicity.com/openssh/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.ssh.com/
http://www.f-secure.com/

ssh protocols
For a typical usage of OpenSSH, there’s usually one ssh-client (/usr/bin/ssh) calling one ssh-server
(/usr/sbin/sshd), which is sitting on another host, listening to port 22. During their communication, very
many different protocols will go to action.

jfranken@hamster:~ $ echo SSH-1.99-jfranken| nc -w 1 gate 22
SSH-1.99-OpenSSH_3.4p1Debian1:3.4p1-1\n[...]
diffie-hellman-group-exchange-sha1,diffie-hell
man-group1-sha1\0\0\0017ssh-rsa,ssh-dss\0\0\0faes128-cbc
,3des-cbc,blowfish-cbc,cast128-cbc,arcfour,aes192-cbc,aes256-cbc
,rijndael-cbc@lysator.liu.se\0\0\0faes128-cbc,3des-cbc,blowfish-cbc
,cast128-cbc,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.
liu.se\0\0\0Uhmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@opens
sh.com,hmac-sha1-96,hmac-md5-96\0\0\0Uhmac-md5,hmac-sha1,hmac-ripem
d160,hmac-ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96\0\0\0\tnone
,zlib\0\0\0\tnone,zlib\0

The list shows the algorithms covered by ssh protocol version 2. A subset was already contained in version
1, which should not be used any more for security reasons. OpenSSH 3 knows the ssh protocol versions 1
and 2.

Here are some details for selected algorithms:

draft-galb-secsh-gssapi-00.txt
draft-galb-secsh-publickey-channel-00.txt
draft-ietf-secsh-architecture-06.txt
draft-ietf-secsh-auth-kbdinteract-01.txt
draft-ietf-secsh-connect-08.txt
draft-ietf-secsh-transport-08.txt
draft-ietf-secsh-userauth-08.txt
draft-nisse-secsh-srp-00.txt
draft-salowey-secsh-kerbkeyex-00.txt

Page: 3[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

http://www.ietf.org/proceedings/00dec/I-D/draft-galb-secsh-gssapi-00.txt
http://www.ietf.org/proceedings/00dec/I-D/draft-galb-secsh-publickey-channel-00.txt
http://www.ietf.org/proceedings/00dec/I-D/draft-ietf-secsh-architecture-06.txt
http://www.ietf.org/proceedings/00dec/I-D/draft-ietf-secsh-auth-kbdinteract-01.txt
http://www.ietf.org/proceedings/00dec/I-D/draft-ietf-secsh-connect-08.txt
http://www.ietf.org/proceedings/00dec/I-D/draft-ietf-secsh-transport-08.txt
http://www.ietf.org/proceedings/00dec/I-D/draft-ietf-secsh-userauth-08.txt
http://www.ietf.org/proceedings/00dec/I-D/draft-nisse-secsh-srp-00.txt
http://www.ietf.org/proceedings/00dec/I-D/draft-salowey-secsh-kerbkeyex-00.txt

Configuration

Client-configuration
The ssh client will read its configuration from

Command line parameters,
~/.ssh/config and
/etc/ssh/ssh_config .

First hit matching. In the config files you can setup host regions, like this:

Host stunnel.our-isp.org
 ProxyCommand ~/.ssh/ssh-https-tunnel %h %p
 Port 443

Host hera 141.*
 User franken
 Protocol 1

Host 192.* gate mausi hamster tp
 Compression no
 Cipher blowfish
 Protocol 2

Host *
 ForwardAgent yes
 ForwardX11 yes
 Compression yes
 Protocol 2,1
 Cipher 3des
 EscapeChar ~

More about:
see ssh(1), ssh_config(5) manpages.

Server-configuration
The ssh-server reads its configuration from:

command-line parameters and
/etc/ssh/sshd_config

First hit matching.

More about:
see sshd(8), sshd_config(5) manpages.

Page: 4[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

http://www.openbsd.org/cgi-bin/man.cgi?query=ssh
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh_config
http://www.openbsd.org/cgi-bin/man.cgi?query=sshd
http://www.openbsd.org/cgi-bin/man.cgi?query=sshd_config

Login Sessions
By typing

ssh hostname

you can enter a shell on hostname .

The authentication is done for your local username.

If you want to login as a different user, there’s a couple of ways to do that:

ssh -l username hostname
ssh username@hostname
ssh -o User=username hostname
ssh hostname having User hostname in your config file.

Escape-commands
During the ssh session you can call functions of the ssh-client by hitting <Enter><Tilde> and then one of
the following keys:

. abandon the session, breaking down any tunnels.

& abandon the session, tunnels stay open.

C
Shows you a prompt (ssh>), on which you can subsequently setup tunnels with the -L and -R
commands (Details: see Teil 2).

<Ctrl-Z> Suspend ssh. You are back in the shell from which you called ssh. Get back online with fg .

shows a list of connections that are tunneling on your session.

? Help. Also shows the other options, which I left out here, because I didn’t find them too useful.

If you’re on a keyboard with deadkeys, you may need to press the tilde key twice for a tilde to pop up.

In case you are telescoping ssh sessions (one into another), you will get the n’th shell’s escape mode (count-
ing from the outside) by pressing <Enter> and then the tilde key n (deadkeys: 2n) times. People finding that
too complicated can define different escape characters for each ssh, for example <Ctrl-B> :

jfranken@gate:~ $ ssh -e ^B hamster
jfranken@hamster:~ $ <Strg-B>.
Connection to hamster closed.
jfranken@gate:~ $

Page: 5[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

Starting interactive programs automatically
$ ssh tp -t vim /etc/hosts

Page: 6[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

Encryption
ssh will encrypt its full conversation with sshd, including authenticaton and any tunnels. You can select
between different ciphers:

3des is said to be particular secure, but needs a lot of CPU time.
blowfish is quite fast

Here’s some methods to use the blowfish -cipher in your local net, which relieves participating CPUs and
thus speeds up communcations:

ssh -c blowfish ...
ssh -o Cipher=blowfish ...
Put Cipher blowfish for some or any hosts in ~/.ssh/config or /etc/ssh/ssh_config .

In contact to port-forwarding you can encrypt communications over unsecure network sections, being abso-
lutely transparent for the client, which allows you to connect branches offices over the Internet:

Compression
If your network turns out to be a bottleneck, you can have ssh compress any communications between ssh
and sshd. At the cost of a little more CPU power on both sides, this saves up to 50% of all network packets.

To activate compression:

ssh -C ...
ssh -o Compression=yes ...
Put Compression yes in ~/.ssh/config or /etc/ssh/ssh_config .

Additionally, you should have a line Compression yes in the server’s /etc/ssh/sshd_config .

In contact to port-forwarding you can speed up communications over slow network sections, being absolutely
transparent for the client:

Page: 7[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

Public key authentication
Public key authentication bases on the principle of asymmetric ciphers: The client and the server own one
key that can encrypt messages in a way, that only the other partner can decrypt it. So if one keeps his key
secret ("private key"), the other can assume authenticity, as soon as he can decompress a message using
his own keys ("public key").

There are three different algorithms for this purpose:

algorithm
parameter to
ssh-keygen

Filenames publickey starting with

RSA
for SSH version 2 and
up

-t rsa ~/.ssh/id_rsa[.pub] ssh-rsa

RSA
for SSH version 1

-t rsa1 ~/.ssh/identity[.pub]
1024 35 o.ä, (bits expo-
nent)

DSA -t dsa ~/.ssh/id_dsa[.pub] ssh-dss

I’m not going into the specialities of each algorithm. Exctract is, that DSA generates most CPU load while
RSA1 is easiest to crack. Thus, in common cases RSA would be a reasonable tradeoff.

Every public key (e.g. ~/.ssh/id_rsa.pub) consists of the following parts:

a) a type-definition (e.g. ssh-rsa , see above)
b) space
c) The modulus (that’s the long string of letters and numbers)
d) optional: one space, followed by a comment

It will be uuencoded to fit 6 bit ascii, which makes it look like a single, long line of text. This allows you to
paste it into the text of an email.

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAxtWFO8XbyT6+IlBAWYyOb
/VWraJ7iymKVsb0TNmieBSzF6fgustkT0nX3udbSqTqiEC/wXFKqeyl27
bkd+rEcFba+s+wgv9MKRaiV0kOFVQrAvwrKnS1QI6YZWZIhSP7KS5QE0H
Rra+gy/47vGwHUn0RxksGOQ6YsKP5lNN8H3E= jfranken@hamster

Page: 8[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

ssh-keygen
Each authentication algorithm needs a separate key pair, which can be generated by the ssh-keygen
command. Choose the algorithm, for which you are about to generate a pair of keys, and supply it to the
-t -parameter.

$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/export/home/jfranken/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /export/home/jfranken/.ssh/id_rsa.
Your public key has been saved in /export/home/jfranken/.ssh/id_rsa.pub.
The key fingerprint is:
7c:02:29:1c:d4:8a:90:ad:f2:b0:65:9e:71:92:ef:0f jfranken@hamster

The fingerprint is a shared attribute of private- and publickey, and thus allows you to check which keys
belong together.

$ ssh-keygen -l -f .ssh/id_rsa
1024 5a:b6:c4:50:ce:ec:18:78:e9:b2:e7:5b:04:c2:e4:c7 .ssh/id_rsa.pub

You can later change a private key’s passphrase:

$ ssh-keygen -p -f ~/.ssh/id_rsa
Enter old passphrase:
Key has comment ’/export/home/jfranken/.ssh/id_rsa’
Enter new passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved with the new passphrase.

If you happen to have lost your public key, you can generate a new one from your private key:

$ ssh-keygen -y -f ~/.ssh/id_rsa
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEA5+UaqG/zI...

But remember, there’s no way to regenerate a lost private key.

Page: 9[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

Using hostkeys

known_hosts
If you need to make sure, that your ssh connection goes to the right server, call ssh with -o StrictHostk-
eyChecking=yes or add StrictHostkeyChecking yes to your ~/.ssh/config file for the hosts
concerning.

The client will then stop connecting, if the server’s secret hostkey does not match the public key, which you
had stored on the client at ~/.ssh/known_hosts or /etc/ssh/ssh_known_hosts before:

jfranken@hamster $ ssh -o StrictHostkeyChecking=yes gate
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
5c:6e:b2:99:3d:44:03:32:fb:e8:c1:ca:4f:cb:9e:8f.
Please contact your system administrator.
Add correct host key in /export/home/jfranken/.ssh/known_hosts to get rid of this message.
Offending key in /export/home/jfranken/.ssh/known_hosts:45
RSA host key for gate has changed and you have requested strict checking.
Host key verification failed.
jfranken@hamster $

or, if that host has never been entered to the known_hosts file:

jfranken@hamster $ ssh -o StrictHostkeyChecking=yes gate
No RSA host key is known for gate and you have requested strict checking.
Host key verification failed.
jfranken@hamster $

If you don’t want to add all those hostkeys to your known_hosts -file by hand, but just be warned about
changes, you can set StrictHostkeyChecking to ask :

jfranken@hamster $ ssh -o StrictHostkeyChecking=ask gate
The authenticity of host ’gate (192.168.42.1)’ can’t be established.
RSA key fingerprint is 5c:6e:b2:99:3d:44:03:32:fb:e8:c1:ca:4f:cb:9e:8f.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ’gate,192.168.42.1’ (RSA) to the list of known hosts.
jfranken@gate $

The lines of known_hosts are of the following format:

1. list any hostnames or ip addresses of a server, separated by comma, wildcard *? and negation ! aware.
2. space
3. the server’s public key (comment stripped)
4. optional: space, comment

sshd will look for the hostkeys at these places on the server:

/etc/ssh/ssh_host_dsa_key[.pub] (DSA-Format)
/etc/ssh/ssh_host_rsa_key[.pub] (RSA-Format f. SSH version 2+)
/etc/ssh/ssh_host_key[.pub] (im RSA-Format f. SSH version 1)

You can generate these keys with the ssh-keygen tool. Just be sure to provide an empty passphrase to the
privatekey. At most distributions this job is typically done by the install script of the sshd package.

Page: 10[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

When the hostkey of a server changes (for example after upgrading to a newer version of OpenSSH), you
may need to remove the corresponding lines from your known_hosts files on the client.

More about:
see: sshd(8) manpage

ssh-keyscan
If you have got to enter quite a number of hostkeys to some known_hosts file, have ssh-keyscan do the
job for you.

Because failures to read the hostkey point to network- or server-problems, you can run ssh-keyscan to
detect such issues: if it does not display the hostkey, there is a problem.

More about:
see: ssh-keyscan(1) manpage

Page: 11[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

http://www.openbsd.org/cgi-bin/man.cgi?query=sshd
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh-keyscan

Using identity keys

authorized_keys
Alternative to entering a password you can use an keypair for authentication to a server. That private key can
be protected by a passphrase again.

Advantages of public key- over password-authentication:

It’s much harder to crack keys on brute force as it is to try out passwords
You got my public key? - Let me use it to access your server.
One central passphrase to remember or change for every server I use.
Leaving just my public key on the server is much safer than setting a personal password in /etc/shadow,
which might get cracked.
If a number of people share one account, each user can have a public key and passphrase of his/her
own.

Using public keys for authentication is easy: XXX TODO

At the beginning of each line in ~/.ssh/authorized_keys you can tell sshd from wich hosts a public key
can be used and what special options (environment settings, shell, etc) to use. The exact syntax is as
follows:

1. An optional list of options, separated by comma, followed by a space:
a) environment="SSHKEY=jfranken"

(if you use openssh ≥3.5p1, you need to set PermitUserEnvironment=yes in
/etc/ssh/sshd_config to allow this.)

b) command="./menu.pl"
c) from="*.jfranken.de,egal.our-isp.org"
d) no-port-forwarding
e) no-X11-forwarding
f) permitopen="host:port"
g) no-agent-forwarding
h) no-pty

2. the public key (see *.pub file), comment stripped.
3. optional: space comment

If the server option PasswordAuthentication No is set in /etc/ssh/sshd_config , the use of public
keys becomes mandatory, which gives you pretty good security against brute-force attacks.

More about:
see: sshd(8) manpage

ssh-copy-id
If you regularily have to deposit your public key on servers, you will like ssh-copy-id , which is a little shell
script doing all the work for you. Unfortunately it defaults to RSA1 (~/.ssh/identity.pub) public keys. If
you’re on RSA(2), append the parameter -i ~/.ssh/id_rsa.pub or use a version that was patched by
me.

jfranken@hamster $./ssh-copy-id2 franken@hera.cs.uni-frankfurt.de
franken@hera.cs.uni-frankfurt.de’s password:
Now try logging into the machine,
with "ssh ’franken@hera.cs.uni-frankfurt.de’", and check in:
 .ssh/authorized_keys
to make sure we haven’t added extra keys that you weren’t expecting.
jfranken@hamster $

Page: 12[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

http://www.openbsd.org/cgi-bin/man.cgi?query=sshd

More about:
see: ssh-copy-id(1) manpage

Page: 13[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

Logging in without a password

Empty passphrase
If your private key’s passphrase is empty, and the corresponding public key is placed in a server’s
~/.ssh/authorized_keys file, you can greatly use ssh in automated scripts. But be very sure nobody
gets hold of your private key file, escpecially if it’s on a nfs/cifs fileserver.

ssh-agent, ssh-add
ssh-agent is a solution for those users, who are tired of always entering the same passphrase, but on the
other hand don’t want to abandon a passphrase for their private key for security reasons. In order to use that
private key, a hacker would need access to the socket file on their local computer.

If you call ssh-agent without parameters, it will create an unix-domain-socket, tell you, how to reach it, and
listen on it in the background.

$ ssh-agent > myagent.sh
$ cat myagent.sh
SSH_AUTH_SOCK=/tmp/ssh-XXcMloql/agent.21753; export SSH_AUTH_SOCK;
SSH_AGENT_PID=21754; export SSH_AGENT_PID;
echo Agent pid 21754;

Use ssh-add every time you want to teach ssh-agent one of your private keys:

$. ./myagent.sh
Agent pid 21754;
$ ssh-add ~/.ssh/id_rsa
Enter passphrase for /export/home/jfranken/.ssh/id_rsa:
Identity added: /export/home/jfranken/.ssh/id_rsa (/export/home/jfranken/.ssh/id_rsa)
$

If you don’t supply a private key, ssh-add will load the standard keys (identity ,id_rsa and id_dsa).

Use ssh-add -l to get a list of any keys that that ssh-agent knows, or ssh-add -L to retrieve all corre-
sponding public keys.

When connecting, the ssh -client will then try the private keys from ssh-agent first, instead of those from
the identity files:

jfranken@hamster $. ./myagent.sh
Agent pid 21754;
jfranken@hamster $ ssh gate
[...]
debug1: userauth_pubkey_agent: testing agent key /export/home/jfranken/.ssh/id_rsa
debug1: input_userauth_pk_ok: pkalg ssh-rsa blen 149 lastkey 0x80926f8 hint -1
[...]
jfranken@gate $

Alternative to using the myagent.sh you can use lsof to find the values for the environment variables:

$ /usr/sbin/lsof -a -u jfranken -U -c ssh-agent
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
ssh-agent 477 jfranken 3u unix 0xc1da1aa0 1155 /tmp/ssh-XXWzoqlO/agent.452
$ export SSH_AUTH_SOCK=/tmp/ssh-XXWzoqlO/agent.452 SSH_AGENT_PID=477

If you want the variables to be set automatically to the running ssh-agent at each login, you can add the
program keychain to your ~/.bash_profile .

Page: 14[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

http://www.gentoo.org/proj/en/keychain.xml

More about:
see: ssh-agent(1) manpage
ssh-add(1) manpage

Further readings
Part 2: SSH-tunnelling
Part 3: Breaking firewalls
The Secure Shell TM Frequently Asked Questions
OpenSSH Project Page

Page: 15[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh1.en.html

http://www.openbsd.org/cgi-bin/man.cgi?query=ssh-agent
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh-add
http://www.employees.org/~satch/ssh/faq/ssh-faq.html
http://www.openssh.org/

	OpenSSH Section 1: The basics
	Contents
	What's OpenSSH?
	How to get it
	Components
	Alternatives to OpenSSH

	ssh protocols
	Configuration
	Client-configuration
	Server-configuration

	Login Sessions
	Escape-commands
	Starting interactive programs automatically

	Encryption
	Compression
	Public key authentication
	ssh-keygen
	Using hostkeys
	known_hosts
	ssh-keyscan

	Using identity keys
	authorized_keys
	ssh-copy-id

	Logging in without a password
	Empty passphrase
	ssh-agent, ssh-add

	Further readings

