
OpenSSH
Section 2: SSH-tunnelling

Johannes Franken
<jfranken@jfranken.de>

On this page I show you, how to tunnel ssh or other protocols over OpenSSH and what advantages you can
obtain doing so. 

Contents
1.  X11-forwarding 
2.  Pipes 

a)  imap (fetchmail, mutt) 
b)  smtp (exim) 
c)  rsync 
d)  scp, sftp 
e)  uucp 
f)  cvs

3.  Port forwarding 
a)  Local port forwarding 
b)  Remote port forwarding 
c)  Telescoping tunnels

4.  ppp over ssh 
5.  Handling network-timeouts 

a)  Keepalives 
b)  autossh

6.  Further readings

 

Page: 1[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html



X11-forwarding
Under unix it’s common to start applications ("X-clients") on distant computers and to teleguide them from
the local screen ("X-server"). There’re two different methods to setup such a connection: 

not using a X11-tunnel 

jfranken@hamster: $ xhost gate
gate being added to access control list
jfranken@hamster: $ ssh gate
jfranken@gate: $ export DISPLAY=hamster:0
jfranken@gate: $ netscape &
[1] 17101
jfranken@gate: $

using a X11-tunnel 

jfranken@hamster: $ export DISPLAY=:0
jfranken@hamster: $ ssh -X gate
jfranken@gate: $ echo $DISPLAY
localhost:10.0
jfranken@gate: $ netscape &
[1] 17153
jfranken@gate: $

For this to work, on gate libX.so and xauth must be installed and /etc/ssh/sshd_config contain 
X11Forwarding yes.

Alternative to the -X-parameter you could call ssh with -o ForwardX11=yes or append ForwardX11 
yes to your ~/.ssh/config file.

Weighting:

Page: 2[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html



criterion not using a X11-tunnel using a X11-tunnel

Encryption

- All communication goes over the wire in cleart-
ext. For example, some network participant could
catch all keys you press within your xterm and
see any passwords you use.

+ Communication is encrypted. The
time exposure for encrypting is retrieved
with ease by the compression.

X11-security

- The X-server must accept connections on
tcp-port 6000, which implies a bunch of security 
disasters, e.g. unauthorized access to your 
screen.

+ The x-server may be run with 
-nolisten tcp, which protects it
agains unauthorized access from other
network participants.

Firewall/NAT - This method will not work with a firewall
between ssh server and client.

+ No problem with firewalls, as long a
they let ssh pass trough.

Using X11-tunnels over ssh gives you a lot of advantages. 
 

Page: 3[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html



Pipes
If you call ssh with a command to execute, not using the -t-parameter, ssh will redirect that command’s
stdin/stdout/stderr to the shell it was called from. This way you can easily build ssh in pipes: 

The following command will show you the filling grade of the root partition at the host gate:

$ ssh gate df | awk ’/\/$/ {print $5}’
64%
$

The following command will copy the mydir directory into the /tmp-directory on the computer gate

$ tar cf - mydir/ | ssh gate ’cd /tmp && tar xpvf -’

imap (fetchmail, mutt)
Imap is a protocol for transferring mails. Unfortunately it transfers all mails other the net unencryptedly. If you
have shell access to your mailserver, you should tunnel imap over ssh, which makes the transferring much
safer (encryption, publickey authentication) and faster (compression). The easiest way is to have your 
mailuseragent call an imapd in preauth-mode on the mailserver and talk to it over ssh’s stdin/stdout:

jfranken@hamster $ ssh gate imapd
* PREAUTH [231.36.30.64] IMAP4rev1 v12.264 server ready

Example configurations for some Mailuseragents: 

fetchmail: Any mail to the domain jfranken.de is received at my provider (our-isp.org), from
where fetchmail picks it up at regular intervals and feeds it to my local mailserver 
(gate.jfranken.de). Due to the following .fetchmailrc fetchmail will tunnel the imap-protocol
over ssh:

poll johannes.our-isp.org
        with options proto imap,
        preauth ssh,
        plugin "ssh -x -C jfranken@%h /usr/local/bin/imapd Maildir 2>/dev/null",
        smtphost gate,
        fetchall

mutt: So my mail lays on gate, and I normally access it ifrom a local mutt, using imap. When I need to
access my mail over the Internet, mutt will tunnel all imap comminucations over ssh. The following lines
in ~/.muttrc make this possible:

set tunnel="imapd || ssh -qC jfranken@gate.jfranken.de imapd"
set folder="{gate}~/Mail"

 

Page: 4[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html



smtp (exim)
Some domains refuse receiving mails from dial-up systems. The following /etc/exim/exim.conf makes
exim (version 3.35) route mails for such domains over a ssh-connection to johannes.our-isp.org, who
has a fixed IP address:

ssh:
  driver = pipe

  bsmtp = all
  bsmtp_helo = true
  use_crlf = true
  prefix = ""
  suffix = ""

  command = ssh johannes.our-isp.org netcat -w 1 localhost smtp
  user = jfranken

  timeout = 300s
  temp_errors = 1
  return_fail_output = true

t_online:
  driver = domainlist
  transport = ssh
  route_list = "^t-online\.(de|at|com)|t-dialin\.net$ ;^mail.com$                            ;^lists.sourceforge.net$               ;^bigpond.com$                         ;^aol.com$                   ...

rsync
rsync is an ingenious tool for incremental mirroring of directories, e.g. over several local hard drives, nfs or
smbfs. When called with -e ssh, it will tunnel any communications over ssh, gladly through the Internet. I
use the following commandline to upload my web pages to my webserver:

$ rsync --delete -a -e ssh ./ jfranken@www.jfranken.de:public_html/

More about:
see: rsync web pages

scp, sftp
More about:
see: scp(1), sftp(1) manpages.

 

Page: 5[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html

http://rsync.samba.org/
http://www.openbsd.org/cgi-bin/man.cgi?query=scp
http://www.openbsd.org/cgi-bin/man.cgi?query=sftp


uucp
uucp is a protocol for making files avaliable and picking them up. It’s traditionally used for the submission of
email and usenet-news. Since the authentification is done without encryption, I recommend tunnelling uucp
over ssh. To allow this, just add one line for each uucp-user to the ~uucp/.ssh/authorized_keys on the 
answering system:

no-port-forwarding,no-X11-forwarding,no-agent-forwarding,
command="/usr/sbin/uucico -l" ssh-rsa AAAAB3NzaC1yc2 ...

and configure some special modemport on the the calling system, which actually sets up an ssh connection
and pipes everything through it:

/etc/uucp/sys:
        system YOURPROVIDER
        call-login *
        call-password *
        time any
        chat " \d\d\r\c ogin: \d\L word: \P"
        chat-timeout 30
        protocol i
        port ssh

/etc/uucp/port:
        port ssh
        type pipe
        command /usr/bin/ssh -qi ~/.ssh/id_rsa.uucp uucp@YOURPROVIDER
        reliable true
        protocol etyig

cvs
cvs is a versioning system for arbitrary files. It even solves the conflicts as well, which occour, whenever 
multiple users are trying to edit the same set of files. Synchronisation is done using either a shared directory
on a filesystem (local, nfs, samba, etc) or a CVS-server, which can be connected to ssh. If you want ot setup
a CVS-server, I recommend creating a cvs account on your repository server, which homes to the repository 
directory. Then put one line like this to its ~/.ssh/authorized_keys for each user, which will actually
start the cvs server process:

no-port-forwarding,no-X11-forwarding,command="/usr/bin/cvs server" ssh-rsa AAAAB3NzaC1yc2...

To tune their cvs to talk to the the cvs-server over ssh, users only need to enter the following commands:

$ export CVS_RSH=ssh
$ export CVSROOT=:ext:cvs@host:/export/home/cvs

Then they can run cvs like usual, e.g.

$ cvs co module

 

Page: 6[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html



Port forwarding

Local port forwarding

When I run ssh -g -L 4321:www.ibm.com:80 gate on hamster, ssh will intiate a session with gate,
listen on port 4321 and handle any tcp connection attempts on that port to the sshd on gate, which will pass
them to port 80 on www.ibm.com. The way back works vice versa. I actually setup a tunnel from 
hamster:4321 to www.ibm.com:80. 

In my webbrowser the website http://hamster:4321 would look pretty much like IBM’s.

I need root access on hamster to create a listening port <1024.

If I leave away the -g parameter, ssh will only listen on 127.0.0.1 (alias localhost), so the clients would
have to be local for this, or change from another tunnel locally.

If the users on the sshd-host must not be authorized for shell access, but need to do portforwarding, you
should set PasswordAuthentication=no in your /etc/ssh/sshd_config and then insert something
like command="/bin/cat" or command="/bin/sleep 2000d" at the beginning of each public-key line
in ~/.ssh/authorized_keys.

If you’re looking for a keepalive function, which keeps your firewall’s natting tables from dropping the tunnels
when idle, put the following option to the beginning of each public-key line:
command="while :;do date;sleep 10;done"

To restrict the accessible hosts and ports for forwarding, add some permitopen-options before the respec-
tive public keys. For example:
permitopen="192.168.42.5:80",permitopen="127.0.0.1:8080"

 

Page: 7[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html



Remote port forwarding

When I type ssh -R 9030:intranet:80 gate on hamster, the sshd at gate will accept the connection,
start listening on port 9030 and pass any packets on that port back to the ssh-client on hamster, which will
forward them to port 80 at intranet. The way back works vice versa. I actually setup a tunnel from 
gate:9030 to intranet:80. 

So, people browsing to http://gate:9030 will see your intranet server.

I need root access on gate, if you want to open a remote port <1024. If root-logins via ssh are forbidden, I
can let the ssh-tunnel end on a high port (e.g. 9030) first, and have xinetd, netcat or firewall rules redirect
it to the actual (low) port.

Try this /etc/inetd.conf:

80  stream tcp nowait nobody /bin/nc /bin/nc -w 3 localhost 9030

or /etc/xinetd.d/intranet:

service intranet
{
        type            = UNLISTED
        flags           = REUSE
        socket_type     = stream
        protocol        = tcp
        user            = root
        wait            = no
        instances       = UNLIMITED
        port            = 80
        redirect        = localhost 9030
        disable         = no
}

or this firewall script:

echo 1 > /proc/sys/net/ipv4/ip_forward # turns on forwarding
iptables -F -t nat # Flush existing translation tables
iptables -t nat -A PREROUTING -p tcp --dport 9030 -j DNAT --to localhost:80
iptables -t nat -A POSTROUTING -j MASQUERADE

As of its default configuration, sshd binds remote tunnels to the loopback interface, making them listen to
requests from localhost only. If you want your tunnels to work for your other network interfaces as well, either
add GatewayPorts yes to your /etc/ssh/sshd_config or redirect the port locally using ssh or xinetd
as described above.

 

Page: 8[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html



Telescoping tunnels
You can tell your ssh-client to connect to a port other than 22 by using the -p parameter. This comes in
handy if you want to setup a ssh connection through a tunnel that you’ve already installed (e.g. in another
ssh session). 

With each tunnel you increase your reach up to two hosts:

Number of tunnels Max. hops

0 1

1 3

2 5

3 7

The following outline shows you how to involve five hosts with two telescoped tunnels, in order to setup a vnc
session over three firewalls that don’t like vnc.: 

 

Page: 9[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html



ppp over ssh
The point-to-point-protocol describes the connection establishment and IP communications between two
virtual network interfaces. With a five minutes effort you can tunnel it over ssh, allowing you to route arbitrary
IP packets over a ssh-connection. 

Configuring the server:

1.  Install ppp (e.g. version 2.4.1.uus-4 from Debian GNU/Linux 3.0) 
2.  Check the file attributes:

$ ls -l /usr/sbin/pppd
-rwsr-xr-- 1 root  dip   230604 10. Dez 2001  /usr/sbin/pppd*

3.  Create a dedicated user account and authorize it to execute pppd:

$ adduser --group dip pppuser

4.  Select a PAP-password and IP range:

$ echo ’pppuser * geheim *’ >> /etc/ppp/pap-secrets

5.  Assign IP-addresses to RSA-keys in ~pppuser/.ssh/authorized_keys (one line per key)
no-port-forwarding,no-X11-forwarding,no-agent-forwarding,command="/usr/sbin/pppd remotename pppuser refuse-chap refuse-mschap refuse-mschap-v2 refuse-eap require-pap 192.168.45.1:192.168.45.2 notty de...

6.  Remove any unwanted routing- and fireall-initialisations from those /etc/ppp/ip-up.d/* scripts, as
provided by your distribution for dialing into the Internet. If there are other PPP-connections configured
on this system (e.g. for dialing into the Internet), the scripts can make use of the the $LINKNAME-vari-
able, which has the value "pppoverssh".

Configuring the client:

1.  Install ppp (e.g. version 2.4.1.uus-4 from Debian GNU/Linux 3.0) 
2.  Make sure you can access pppd and that it’s setuid root:

$ ls -l /usr/sbin/pppd
-rwsr-xr-- 1 root  dip   230604 10. Dez 2001  /usr/sbin/pppd*
$ usermod -G dip jfranken

3.  Create a new provider:

$ cat >/etc/ppp/peers/ssh <<EOF
pty ’ssh -e none pppuser@SERVER-HOSTNAME false’
user pppuser
nodetach
linkname pppoverssh
# debug
EOF

Page: 10[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html



4.  Store the server’s PAP-password:

$ echo ’pppuser * geheim’ >> /etc/ppp/pap-secrets

5.  Tweak /etc/ip-up.d/* as neccessary (e.g. setting the defaultroute to $PPP_IFACE)

It should look like this, if you’ve done everything right:

jfranken@hamster:~ $ /usr/sbin/pppd call ssh
Using interface ppp0
Connect: ppp0 <--> /dev/ttyp4
Remote message: Login ok
kernel does not support PPP filtering
Deflate (15) compression enabled
Cannot determine ethernet address for proxy ARP
local  IP address 192.168.45.2
remote IP address 192.168.45.1

More about pppd-options:
see: pppd(8) manpage.

 

Page: 11[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html



Handling network-timeouts

Keepalives
You can configure, if and how ssh and sshd should detect network aborts: 

Side Option Effect

ssh ProtocolKeepAlives=n

After authentication, ssh sends a 32 byte empty packet to the
sshd every n seconds. sshd does not care about this, but the
server’s TCP stack must send back an ACK for that packet. If the
client’s TCP stack does not receive an ACK for this or a later
packet, it will retransmit for some time and then signal a connec-
tion-timeout to ssh, causing ssh to exit.
Linux 2.4 sends 15 retransmits within 14 minutes. You can 
configure the number of retransmits in 
/proc/sys/net/ipv4/tcp_retries2 and 
/etc/sysctl.conf. TCP will retransmit in intervals of
3,6,12,24,48,60,60,60,... seconds.

ssh,sshd KeepAlive=(yes|no)

When opening the TCP-connection, the process will set the 
keepalive-socketoption, causing the TCP-stack to resend an old
(already ACKed) segment when it does not receive data for some
time (e.g. 2 hours). If this packet provokes the opposite side to
repeat its last ACK and this ACK arrives within a timeout (e.g. 75
seconds), the connection is assumed to be alive. Otherwise the
TCP-stack will repeat testing some (e.g. 9) times and then signal
a connection-timeout to the process.
With Linux 2.4 you can configure these times at 
/proc/sys/net/ipv4/tcp_keepalive_intvl, 
/proc/sys/net/ipv4/tcp_keepalive_probes and 
/proc/sys/net/ipv4/tcp_keepalive_time or permanently
set them in /etc/sysctl.conf. With the prementioned default
values the diagnosis of a lost connection takes 2h11’15" alto-
gether!

sshd
ClientAliveInterval=s
ClientAliveCountMax=n

If sshd has not received any data for s seconds, it asks ssh to
show a sign of life in intervals of s seconds, and drops the 
connection after n unsuccessfull challenges.

Discoveries: 

Since there is no ServerAliveInterval for the client, the client will hang for at least 15 minutes after
certain network problems (e.g. NAT-timeouts), which is particularly annoying to any tunnels. 
If you set ProtocolKeepAlives=0, KeepAlive=no and ClientAliveInterval=0, you can take
down the network connection and resume it at any time, e.g. after years.

autossh
autossh is a C-program by Carson Harding <harding@motd.ca> (see http://www.harding.motd.ca/autossh/).
It solves the problem of hanging tunnels by 

1.  starting the ssh-client, 
2.  with a testloop through two portforwardings, 
3.  testing the connection over the testloop regularly and 
4.  stop and restart the ssh-client on problems.

Page: 12[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html

http://www.harding.motd.ca/autossh/


With the following call I make my IMAP-server locally available. autossh checks the ssh-connection every 15
seconds after the first 30 seconds:

$ export AUTOSSH_GATETIME=30
$ export AUTOSSH_POLL=15
$ autossh -M 20000 -g -N -C -L 143:localhost:143 gate.jfranken.de

If you frequently setup tunnels, you might want to define a bash-alias to ssh:

$ alias ssh=’:& a=$! ; port=$(( $a%45536 +20000 ))
  AUTOSSH_GATETIME=30 AUTOSSH_POLL=15 autossh -M $port’
$ ssh -g -N -C -L 143:localhost:143 gate.jfranken.de
[1] 6418

This writes the next PID to $a, calculates a value between 20000 and 65553 by adding 20000 or -25536 to
$a, and then passes the result as monitoring-port to autossh. 

Further readings
Part 3: Breaking firewalls 
The Secure Shell TM Frequently Asked Questions 
OpenSSH Project Page

Page: 13[2013-04-29]       http://www.jfranken.de/homepages/johannes/vortraege/ssh2.en.html

http://www.employees.org/~satch/ssh/faq/ssh-faq.html
http://www.openssh.org/

	OpenSSH Section 2: SSH-tunnelling
	Contents
	X11-forwarding
	Pipes
	imap (fetchmail, mutt)
	smtp (exim)
	rsync
	scp, sftp
	uucp
	cvs

	Port forwarding
	Local port forwarding
	Remote port forwarding
	Telescoping tunnels

	ppp over ssh
	Handling network-timeouts
	Keepalives
	autossh

	Further readings

