
OpenSSH
Section 3: Breaking Firewalls

Johannes Franken
<jfranken@jfranken.de>

On this page I show you, how to hide ssh in other protocols and tunnel it through firewalls.

Caution:
Passing security systems is forbidden. In this talk I try to establish an understanding for security vulnera-
bilities, so that you can protect yourself.

Contents
1. Motivation
2. Using open ports
3. Using existing proxy-servers

a) ssh over http
i) httptunnel

b) ssh over https
i) ssh-https-tunnel
ii) transconnect
iii) proxytunnel

4. Recommendations
5. Further readings

Motivation
ssh-connections pose an enormous risk to companies, as employees can use them to setup tunnels and
transfer files, disregarding of any Logfiles and virus scanners.

That’s why many companies disallow access to port 22 of any Internet adresses on their router- and fire-
wall-devices. But, since today practically no company can abstain from access to the Internet, they usually
have certain holes in their firewall policies. In this talk I will show you, how to explore and (ab?)use them for
ssh connections.

Applying your knowledge from part 2 (particularly ppp-over-ssh), it is trivial to make arbitrary IP-connections
through almost any firewall.

Page: 1[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh3.en.html

Using open ports
First you should check if the firewall basically lets certain ports pass. I recommend using the nmap portscan-
ner of www.nmap.org:

root@hamster$ nmap -sA -p 1-65535 www.jfranken.de
Starting nmap V. 2.54BETA22 (www.insecure.org/nmap/)
Interesting ports on www.jfranken.de (195.88.176.20):
(The 21 ports scanned but not shown below are in state: filtered)
Port State Service
25/tcp UNfiltered smtp
80/tcp UNfiltered http
443/tcp UNfiltered https
Nmap run completed -- 1 IP address (1 host up) scanned in 5138 seconds

If there’s even one single port found to be unfiltered (like port 80 in this example), you can run another
sshd on that port at your server:

or redirect queries from that port to port 22 using ssh, inetd/nc, xinetd or firewall rules:

For an example, see Part 2.

For the client side, either supply the parameter -p 80 to every call to ssh, or permanently configure the port
in ~/.ssh/config:

Host www.jfranken.de
 Port 80
 User jfranken

Page: 2[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh3.en.html

http://www.nmap.org/

Using existing proxy-servers
If (according to nmap) your box can’t access any port in the Internet, but you’ve got web-access via
proxy-servers, you can have that proxy-server forward your ssh-connections to the Internet.

ssh over http

httptunnel
httptunnel makes a remote server’s tcp port locally available. The connection runs over two little
programs (hts and htc), which communicate in http like a browser and webserver.

Setup:

on the server (as root, because port 80 < 1024):

$ hts --no-daemon --forward-port localhost:22 80

on the client:

$ htc --no-daemon --forward-port 8888 --proxy proxy:8080 --proxy-authorization jfranken:geheim hamster:80 &
$ ssh -p 8888 -o NoHostAuthenticationForLocalhost=yes localhost

My version of httptunnel (v3.3) still has some bugs:

only one connection at a time can use the tunnel
a bug makes hts miss the end of proxied connections. You have to kill and restart it after each session.

More about:
see: httptunnel homepage

Page: 3[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh3.en.html

http://www.nocrew.org/software/httptunnel.html

ssh over https

ssh-https-tunnel
The perl-script ssh-https-tunnel sends a CONNECT-request to your proxy-server, thus directing it to open a
TCP-connection with a remote host’s port. Then it will allow communication to that port at stdin/stdout.

An update by Gerd Aschemann <gerd@aschemann.net> simplifies the configuration, so that you don’t
need to store the proxy settings in the source code any more, because it will read them from your
HTTP_PROXY environment variable or the file ~/.ssh/https-proxy.conf.

$ HTTP_PROXY=http://proxy:8080 ./ssh-https-tunnel gate.jfranken.de 25
220 gate.jfranken.de ESMTP Exim 3.35 #1 Fri, 13 Sep 2002 18:08:13 +0200
HELO abc
250 gate.jfranken.de Hello proxy.jfranken.de [192.168.42.2]
QUIT
221 gate.jfranken.de closing connection
$

This is what the proxyservers loggs, after the connection is over:

proxy:~# tail -1 /var/log/squid/access.log| fmt
1031933305.366 11857 192.168.42.20 TCP_MISS/200 213 CONNECT
gate.jfranken.de:25 - DIRECT/192.168.42.1 -

Of course, you can also drive ssh through such a tunnel. If the proxyserver is well configured or sitting
behind a firewall, https-connections might be allowed to port 443 only. In this case, you can start another
ssh-demon on port 443 or forward it to your already running sshd on port 22 (for example with ssh -gL
443:localhost:22 localhost) or xinetd).

Setup:

append the following lines to your ~/.ssh/config file:

host gate.jfranken.de
 ProxyCommand ~/.ssh/ssh-https-tunnel %h %p
 Port 443

store the proxyserver in the file ~/.ssh/https-proxy.conf:

host=proxy
port=8080

And from now on the connection to the ssh-demon at gate:443 will take it’s way via the proxyserver:

Page: 4[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh3.en.html

http://www.snurgle.org/~griffon/ssh-https-tunnel
http://www.aschemann.net/download/ssh-https-tunnel/

$ ssh -v gate.jfranken.de
OpenSSH_3.4p1 Debian 1:3.4p1-2, SSH protocols 1.5/2.0, OpenSSL 0x0090605f
debug1: Reading configuration data /export/home/jfranken/.ssh/config
debug1: Applying options for gate.jfranken.de
debug1: Applying options for *
[...]
debug1: Executing proxy command: ~/.ssh/ssh-https-tunnel gate.jfranken.de 443
[...]
debug1: Remote protocol version 1.99, remote software version OpenSSH_2.9.9p2
[...]
Last login: Fri Sep 13 18:28:31 2002 from p5080d740.dip.t-dialin.net
Have a lot of fun...
jfranken@gate:~$

transconnect
transconnect is a C-library, which replaces the connect-function of glibc in a way, so that any connection
establishment is directed over a proxy server. Thus it will work for dynamically linked binaries only (check
with ldd). It’s advantage over any port-based tunneling tool is it’s flexibility: it will automatically direct any
port over the proxyserver.

$ LD_PRELOAD=~/.tconn/tconn.so netcat hamster daytime
Sat Sep 14 11:25:49 2002

see transconnect Project Home Page

proxytunnel
proxytunnel is a C-program, and makes a remote port behind an https proxyserver locally available -
either as pipe or listening port. You can even configure it to start on demand (from inetd).

It’s got a straight syntax:

$./proxytunnel-linux-i386 --help
Proxytunnel 1.1.0
Jos Visser (Muppet) <josv@osp.nl>, Mark Janssen (Maniac) <maniac@maniac.nl>

Purpose:
 Build generic tunnels trough HTTPS proxy’s, supports HTTP authorization

Usage: Proxytunnel [OPTIONS]...
 -h --help Print help and exit
 -V --version Print version and exit
 -c --config=FILE Read config options from file (FIXME)
 -i --inetd Run from inetd (default=off)
 -a INT --standalone=INT Run as standalone daemon on specified port
 -f --nobackground Don’t for to background in standalone mode (FIXME)
 -u STRING --user=STRING Username to send to HTTPS proxy for auth
 -s STRING --pass=STRING Password to send to HTTPS proxy for auth
 -g STRING --proxyhost=STRING HTTPS Proxy host to connect to
 -G INT --proxyport=INT HTTPS Proxy portnumber to connect to
 -d STRING --desthost=STRING Destination host to built the tunnel to
 -D INT --destport=INT Destination portnumber to built the tunnel to
 -n --dottedquad Convert destination hostname to dotted quad
 -v --verbose Turn on verbosity (default=off)
 -q --quiet Suppress messages (default=off)

Examples:
Proxytunnel [-h | -V]
Proxytunnel -i [-u user -s pass] -g host -G port -d host -D port [-n] [-v | -q]
Proxytunnel -a port [-u user -s pass] -g host -G port -d host -D port [-n] [-v | -q]

Page: 5[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh3.en.html

http://transconnect.sourceforge.net/

Examples:

as pipe:

$ ssh -o ProxyCommand=./proxytunnel-linux-i386 -g proxy -G 8080 -d %h -D %p’ gate
Connected to proxy:8080
Starting tunnel
Linux gate 2.2.19 #5 Wed May 1 20:15:01 CEST 2002 i586 unknown
You have mail.
Last login: Sat Sep 14 10:38:58 2002 from tp.jfranken.de
jfranken@gate:~/ $

as portforwarder:

$./proxytunnel-linux-i386 -a 8888 -g proxy -G 8080 -d hamster -D 22
Forked into the background with pid 1524
$ ssh -p 8888 -o NoHostAuthenticationForLocalhost=yes localhost
Last login: Sat Sep 14 10:54:42 2002 from gate.jfranken.de
jfranken@hamster:~/ $

Of course, you can configure that permanently in your ~/.ssh/config file:

Host gate-via-proxy
 Hostname gate.jfranken.de
 ProxyCommand "proxytunnel-linux-i386 -g proxy -G 3128 -d %h -D %p"

More about:
see: see proxytunnel project homepage

Recommendations
The best way to keep unwanted ssh-connections to the Internet from your network is to completely disallow
Internet access in your LAN. Don’t have proxyservers accessible to any LAN client. Have the browsers
running in a DMZ and redirect their output to the workstations via X11, Citrix Metaframe, VNC a.s.o.

Further readings
The Secure Shell TM Frequently Asked Questions
OpenSSH Project Page

Page: 6[2013-04-29] http://www.jfranken.de/homepages/johannes/vortraege/ssh3.en.html

http://proxytunnel.sourceforge.net/
http://www.employees.org/~satch/ssh/faq/ssh-faq.html
http://www.openssh.org/

	OpenSSH Section 3: Breaking Firewalls
	Contents
	Motivation
	Using open ports
	Using existing proxy-servers
	ssh over http
	httptunnel

	ssh over https
	ssh-https-tunnel
	transconnect
	proxytunnel

	Recommendations
	Further readings

