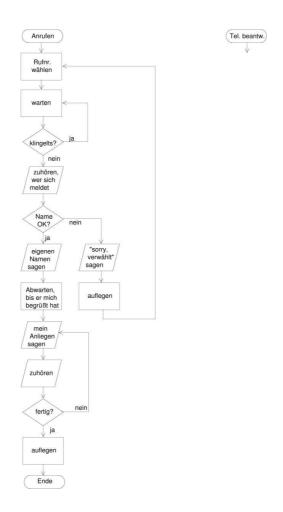
TCP/IP Teil 1: Theoretische Grundlagen

Johannes Franken <jfranken@jfranken.de>

Kursinhalt "Theoretische Grundlagen"

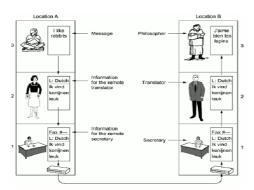
- Kapitel 1: Der TCP/IP Protocol Stack
 - O Einführung in Protokolle und Protocol Stacks
 - Aufbau von TCP/IP
- Kapitel 2: Link-, Network- und Transport- Layer
 - Beschreibung der kernelnahen Layer
 - Netz-Hardware
- Kapitel 3: Application Layer
 - Das Domain Name System
 - Darstellung einiger Anwendungsprotokolle
- Kapitel 4: Fachliteratur
 - Fachliteratur
- Kapitel 5: Diskussion
 - Fragen/ Vorschläge zum 2.Teil/ Feedback

Kapitel 1: Der TCP/IP Protocol Stack


Wer oder was ist TCP/IP

TCP/IP bezeichnet einen Protocol Stack, der die Protokolle TCP* und IP* verwendet. Er

- entstand etwa 1968 aus dem ARPA* net-Projekt des US Verteidigungsministeriums.
- wurde zum Aufbau des heutigen Internet verwendet.
- wird heute in vielen Firmen eingesetzt, z.B. anstelle von IPX, Netbeui oder SNA.
 - o um eigene Dienste im Internet anzubieten
 - o um fremde Dienste aus dem Internet im Firmennetz anzuwenden
 - o weil es gut dokumentiert ist
 - o weil es lizenzfrei eingesetzt werden darf
 - o weil es offensichtlich hervorragend funktioniert

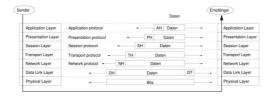

Beispiel Protokolle

Ein Protkoll ist die exakte Beschreibung eines Vorgangs.

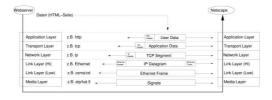
Protocol Stacks

Ein Protocol Stack ordnet Protokolle in Layer.

(Beispiel aus Tanenbaum, Computer Networks)


Ziel ist die Austauschbarkeit der Protokolle innerhalb eines Layer ohne Beeinflussung der übrigen Layer.

Populäre Protocol Stacks


In Reihenfolge ihrer Entstehung:

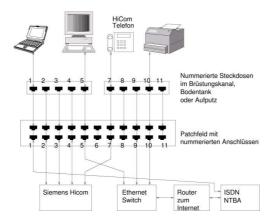
- 1. SNA* von IBM: sieben Layer, rechtlich geschützt
- 2. TCP/IP: etwa vier Layer (Grenzen verschwommen), Protokolle verschiedener Schichten voneinander abhängig, aber erfolgreich
- 3. IPX/SPX von Novell: vier Layer, Konzept von XNS* übernommen
- 4. OSI* von ISO*: sieben Layer, frei und perfekt aber zu spät

Layer im ISO/OSI Protocol Stack

Layer im TCP/IP Protocol Stack

Zoom into TCP/IP Protocol Stack

Wichtige Erkenntnisse


- Netscape merkt nicht, ob eine 3COM- oder iNTEL-Netzkarte oder ein Modem für die Verbindung sorgt; denn
 - der Unterschied betrifft nur den Link Layer, aber
 - Netscape arbeitet im Application Layer.
- 2. Protocol Stacks sind praktisch.
- 3. Der TCP/IP Protocol Stack eignet sich hervorragend für die Kommunikation zwischen gleichen und unterschiedlichen Architekturen.

kurze Pause...

Kapitel 2: Link-, Network- und Transport- Layer

Media Layer

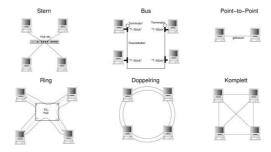
Der Media Layer stellt die physikalische Verbindung zwischen zwei Punkten mittels Kupfer, Glasfaser, Laserstrecke, Infrarotblitz, Richtfunk etc her.

Media Layer: Patchfeld

Das Patchfeld erleichtert Veränderungen an der Verkabelung.

Vorderansicht

Rückansicht



Link Layer

Der Link Layer besteht aus zwei Sub-Layers mit folgenden Aufgaben:

- Low Level: Hardware, die Frames in Signale umsetzt und eine *Topologie* erwartet. (z.B. *Modem**, *NIC**). Erkennt ggf. Leitungsschäden oder Kollisionen.
- Hi Level (am Beispiel Ethernet.)
 - o alle Sendungen in Frames teilen und CRC* anhängen.
 - o eindeutige Empfänger- und Absender-ID mitsenden (MAC*-Adresse)
 - O Ein Protokoll zum Aufsetzen des Network Layer anbieten

Low Level Link Layer: Topologie

Low Level Link Layer: NIC, Modem, ISDN Adapter

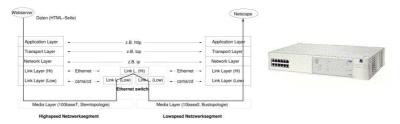
Hardware, die den Computer mit dem Netz verbindet.

Low Level Link Layer: Hub, Concentrator, Repeater

Der Hub leitet alle Frames an die jeweils anderen Ports weiter. Es gibt zwei Arten von Hubs:

- Passive Hub = Concentrator: Luxus Lüsterklemme.
- Active Hub = Repeater: verstärkt die Signale entweder analog oder digital.

Hi Level Link Layer: Spezifikation Ethernet-Frame

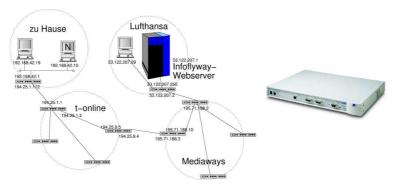


Weitere mögliche Protokolle: z.B. PPP*, SLIP*, IEEE* 802.2 und 802.3, je nach verwendeter Hardware.

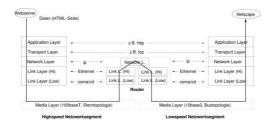
Hi Level Link Layer: Switch, Bridge

Bestimmen den Ausgangsport anhand der MAC-Adressen.

Im Gegensatz zum Switch wandelt die Bridge zusätzlich verschiedene Low Level-Protokolle ineinander um. (z.B. von 100baseT auf Token Ring).


Network Layer

Das typische Network-Layer Protokoll des TCP/IP Stack ist das IP in Version 4.


Network Layer: Routing

Der Network Layer implementiert das Routing.

IP-Router

Network Layer: Router

"Na und, das können Hubs oder Switches auf Link Ebene doch auch...?"

Network Layer: Hubs und Switches sind keine Router

"Das können Hubs oder Switches auf Link Ebene doch auch...?"

Theoretisch: ja.

Aber in der Praxis: kaum möglich.

Der ausschließliche Einsatz von Hubs oder Switches hätte in einem großen Netz wie z.B. dem Internet, folgende Nachteile:

- alle Switches müssten vorher lernen, wo welche MAC-Adresse erreichbar ist.
- Hubs würden das Netz mit unnötigen Frames fluten und Kapazität verschwenden

Network Layer: IP-Adresse

Jede Netzschnittstelle erhält

- eine eindeutige 32bit IP-Adresse (zusätzlich zur 48 bit MAC-Adresse),
- eine Routing Tabelle

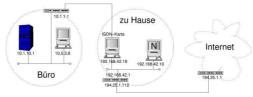
Zur besseren Lesbarkeit notiert man die IP-Adresse als dezimale Bytes.

Bytes können Werte zwischen 0 und 255 annehmen.

Beispiel: aus 11000000101010000010101000001100 wird 192.168.42.12

Wie lautet die Dezimaldarstellung der IP-Adresse 1000110100000010000000100000001?

Network Layer: Routing Tabelle

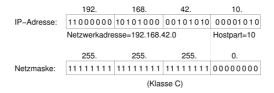

Die Routing Tabelle einer Netzschnittstelle enthält pro Zeile folgende Einträge:

- Ziel-Adresse: Eine fremde IP-Adresse.
- Gateway-Adresse: IP-Adresse eines Routers, über den man zur Zieladresse gelangt.
- Netzmaske (32 bits): gibt an, welche Bits eines Empfängers mit der Ziel-Adresse übereinstimmen müssen, damit ein IP Datagram über diesen Gateway geleitet wird.

Beispiel:

Ziel	Gateway	Netzmaske
192.168.42.0	0.0.0.0	255.255.255.0
10.0.0.0	192.168.42.19	255.0.0.0
0.0.0.0	192.168.42.1	0.0.0.0

Network Layer: Routing Tabelle Beispiel


Routing Tabelle von 192.168.42.10:

Ziel	Gateway	Netzmaske
192.168.42.0	0.0.0.0	255.255.255.0
10.0.0.0	192.168.42.19	255.0.0.0
0.0.0.0	192.168.42.1	0.0.0.0

Network Layer: Routing-Tabelle: Netzmaske

Die Bits der IP-Adresse, an deren Position die Netzmaske 1 ist, bilden die Netzadresse, der Rest den Hostpart. Beispiele:

- 255.255.255.255 für Hostrouting,
- 255.255.255.0 für Routing in Klasse C Netze
- 255.255.0.0 für Routing in Klasse B Netze
- 255.0.0.0 für Klasse A Netze
- 0.0.0.0 für default route

Wenn die Netzmaske andere Werte als 0 und 255 enthält, sagt man Sub-Netz und Subnetzmaske statt Netz und Netzmaske.

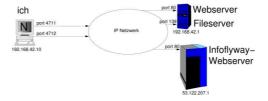
Network Layer: Konventionen zu IP-Adressen im Internet

zur Teilnahme von IP-Adressen am Internet gibt es folgende Regeln:

- Klasse A: IP beginnt mit Bit 0 IP-Adressen von 0.0.0.0 bis 127.255.255.255
- Klasse B: IP beginnt mit Bits 10 IP-Adressen von 128.0.0.0 bis 191.255.255.255
- Klasse C: IP beginnt mit Bits 110 IP-Adressen von 192.0.0.0 bis 223.255.255.255

Zusätzlich sind die IP-Adressen 10.*.*.*, 172.16.*.*-172.31.*.* und 192.168.*.* für private Netze reserviert und im Internet verboten. (Quelle: RFC1597_)
Wieso?

Network Layer: Diagnosetools ping und traceroute


Transport Layer

IP hat zwei Probleme:

- Die Daten sind nicht geprüft (außer ggf. der 4 bit Ethernet-Frame-CRC).
- 192.168.42.1 weiß nicht, ob er die Daten an das Webserverprogramm oder das Fileserverprogramm leiten soll:

Transport Layer: Ports

Transport Layer: UDP

UDP Datagram

Transport Layer: UDP Nachteile

In einigen Anwendungen (z.B. telnet, ftp) hätte UDP gravierende Nachteile, weil

- die Verbindung nach erfolgter Sendung (z.B. eines Tastendrucks) abbricht und
- keine Bestätigung des Erhalts vorgesehen ist.

Transport Layer: TCP

TCP bietet die verlässliche, sitzungsorienterte Übertragung beliebig langer Nachrichten.

Pause...

Kapitel 3: Application Layer

Hostnames

Zur Vereinfachung kann man

- jeder IP-Adresse einen oder mehrere Hostnamen zuordnen (z.B. www)
- jedem Hostname einen Domainnamen zuordnen (z.B. lufthansa.de)

Die Darstellung Hostname. Domainname heißt FQDN*. Beispiel:

IP=192.168.42.1 Hostname= www Domainname= jfranken.de FQDN= www.jfranken.de

Hosts Resolving

Zur Erstellung eines TCP-Segments oder einer UDP-Message wird die IP-Adresse benötigt. Daher haben Anwendungen die Aufgabe, die IP-Adresse aus dem Hostname zu ermitteln. Dieser Vorgang heißt Auflösung oder resolving.

Typische Vorgehensweisen hierbei sind die *Hosts*- und die *DNS*-Methode. Hosts Methode:

DNS Resolving

Der Nameserver ist ein Programm auf einem Netzrechner. Über das DNS*-Protokoll bietet es anderen Netzteilnehmern auf Port 53

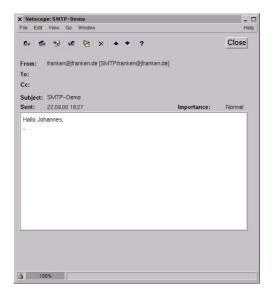
- die IP-Adresse zu einem Hostname (forward mapping)
- die Hostnamen zu einer IP-Adresse (reverse mapping, pointer queries)
- die Weiterleitung der Auflösung an andere Nameserver (forwarding)

Well known ports

Protokoll	Port
telnet	23
daytime	13
smtp	25
http	80
ftp	21
dns	53
https	443
рор3	110
imap2	143
netbios-ns	137
netbios-ssn	139
snmp	161
printer	515
ircd	6667
oracle	1521

Die Umsetzung von Portnamen in Portnummern erledigt die services-Datei.

telnet


daytime

smtp

smtp

http

http

ftp

Kapitel 4: Fachliteratur

Fachliteratur

- die RFCs (stets aktuell auf http://www.rfc-editor.org/)
- Andrew S. Tanenbaum, Computer Networks, Prentice Hall
- W. Richard Stevens, *Unix Network Programming*, Prentice Hall
- W. Richard Stevens, TCP/IP Illustrated, Volume 1 und 3, Addison-Wesley
- Paul Albitz & Cricket Liu, DNS and BIND, O'Reilly
- Johannes Franken, DNS & BIND GE-PACKT, MITP
- Anatol Badach, Datenkommunikation mit ISDN, International Thomson Publishing
- Oxford University Press, Computer Lexikon, Sybex